Summary |
The main theme of the project is in the general area of graph theory and combinatorics. Some more specific topics /quesstions include: 1)Extremal combinatorics: what sort of conditions imposed on graphs/networks guarantee the existence of certain desired substructures, e.g. how can we guarantee the existence of a Hamilton cycle in a graph. This is often well understood for "dense" graphs but often more difficult for "sparse" graphs: it has connections to the famous travelling salesman problem. 2)Decomposition problems: when is it possible to partition the vertices or the edges of the graph such that each part has some desired property (vertex/edge colouring of graphs is an example, but there are many others). 3)Computational counting: this is about fast algorithms to approximately count combinatorial objects and more generally to evaluate graph polynomials / partition functions such as matching/chromatic/Tutte polynomials. We are often interested in studying the location of zeros of these partition functions / polynomials. |

Supervisors |
Viresh Patel (UvA), Joanna Ellis-Monaghan (UvA) |

PhD Student |
Mehmet Akif Yildiz |

Location |
University of Amsterdam (UvA) |

*This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement Grant Agreement No 945045.*