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Abstract

Let Tm be the m-dimensional unit torus, m ∈ N. The torsional rigidity of an open set Ω ⊂ Tm

is the integral with respect to Lebesgue measure over all starting points x ∈ Ω of the expected
lifetime in Ω of a Brownian motion starting at x. In this paper we consider Ω = Tm\β[0, t], the
complement of the path β[0, t] of an independent Brownian motion up to time t. We compute
the leading order asymptotic behaviour of the expectation of the torsional rigidity in the limit as
t→∞. For m = 2 the main contribution comes from the components in T2\β[0, t] whose inradius
is comparable to the largest inradius, while for m = 3 most of T3\β[0, t] contributes. A similar
result holds for m ≥ 4 after the Brownian path is replaced by a shrinking Wiener sausage Wr(t)[0, t]

of radius r(t) = o(t−1/(m−2)), provided the shrinking is slow enough to ensure that the torsional
rigidity tends to zero. Asymptotic properties of the capacity of β[0, t] in R3 and W1[0, t] in Rm,
m ≥ 4, play a central role throughout the paper. Our results contribute to a better understanding
of the geometry of the complement of Brownian motion on Tm, which has received a lot of attention
in the literature in past years.
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1 Main results and discussion

Section 1.1 defines our object of interest, the torsional rigidity of the complement of Brownian motion
on the unit torus, Section 1.2 states our main theorems for its asymptotic scaling, Section 1.4 places
these theorems in their proper context and makes a link with its principal Dirichlet eigenvalue, while
Section 1.3 identifies the asymptotic scaling of the capacity of the Wiener sausage that serves as a key
ingredient.

1School of Mathematics, University of Bristol, University Walk, Bristol BS8 1TW, United Kingdom.
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1.1 Torsional rigidity

Let (β̃(s), s ≥ 0; P̃x, x ∈ Tm) be Brownian motion on the m-dimensional unit torus Tm, i.e., the Markov
process whose generator is the Laplacian on Tm. Given an open set Ω ⊂ Tm, the exit time of Ω is

τ̃Ω = inf{s ≥ 0: β̃(s) /∈ Ω}. (1.1)

The expected exit time given β̃(0) = x is

wΩ(x) = Ẽx(τ̃Ω), x ∈ Tm. (1.2)

The torsional rigidity of Ω is defined as

T (Ω) =

∫
Ω

dx wΩ(x). (1.3)

The torsional rigidity of a cross section of a beam shows up in the computation of the angular change
when a beam of a given length and a given modulus of rigidity is exposed to a twisting moment [3], [20].
It also arises in the calculation of the heat content of sets with time-dependent boundary conditions
[5], in the definition of gamma convergence [9], and in the study of minimal submanifolds [17].

Figure 1: Simulation of β[0, t] for t = 15 and m = 2. The Brownian path β[0, t] is black, its complement
B(t) = Tm\β[0, t] is white.

Let (β(s), s ≥ 0;Px, x ∈ Tm) be a second independent Brownian motion on Tm. The object of
interest in this paper is the random set (see Fig. 1.1)

B(t) = Tm\β[0, t]. (1.4)

In particular, we are interested in the expected torsional rigidity of B(t):

♠(t) = E0

(
T
(
B(t)

))
, t ≥ 0. (1.5)

Since |Tm| = 1 and |β[0, t]| = 0, the torsional rigidity is the expected time needed by β̃ to hit β[0, t]
averaged over all starting points in Tm.

The case m = 1 is uninteresting. For m = 2, as t gets large the set B(t) decomposes into a large
number of disjoint small components (see Fig. 1.1), while for m ≥ 3 it remains connected. As shown
in [14], in the latter case B(t) consists of “lakes” connected by “narrow channels”, so that we may
think of it as a porous medium. Below we identify the asymptotic behaviour of ♠(t) as t → ∞ when
m = 2, 3.
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For m ≥ 4 we have ♠(t) =∞ for all t ≥ 0 because Brownian motion is polar. To get a non-trivial
scaling, the Brownian path must be thickened to a shrinking Wiener sausage

Wr(t)[0, t] =
{
x ∈ Tm : dt(x) ≤ r(t)

}
, t > 0, (1.6)

where r : (0,∞)→ (0,∞) is such that limt→∞ t1/(m−2)r(t) = 0. This choice of shrinking is appropriate
because for m ≥ 3 typical regions in B(t) have a size of order t−1/(m−2) (see [11] and [14]). The object
of interest is the random set

Br(t)(t) = Tm\Wr(t)[0, t], (1.7)

in particular, the expected torsional rigidity of Br(t)(t):

♠r(t)(t) = E0

(
T
(
Br(t)(t)

))
, t > 0. (1.8)

Below we identify the asymptotic behaviour of ♠r(t)(t) as t → ∞ for m ≥ 4 subject to a condition
under which r(t) does not decay too fast.

1.2 Asymptotic scaling of expected torsional rigidity

Theorems 1.1–1.3 below are our main results for the scaling of ♠(t) and ♠r(t)(t) as t → ∞. In what
follows we write f � g when 0 < c ≤ f(t)/g(t) ≤ C <∞ for t large enough.

Theorem 1.1 If m = 2, then

♠(t) � t1/4 e−4(πt)1/2

, t→∞. (1.9)

Theorem 1.2 If m = 3, then

♠(t) = [1 + o(1)]
2

t2
E0

(
1

cap (β[0, 1])2

)
, t→∞, (1.10)

where cap (β[0, 1]) is the Newtonian capacity of β[0, 1] in R3. All inverse moments of cap (β[0, 1]) are
finite.

Theorem 1.3 If m ≥ 4 and

lim
t→∞

t1/(m−2)r(t) = 0,

{
m = 4: lim

t→∞
t

log3 t
1

log(1/r(t)) =∞,

m ≥ 5: lim
t→∞

t
log3 t

r(t)m−4 =∞,
(1.11)

then, subject to (1.13)–(1.14) below,

♠r(t)(t) = [1 + o(1)]
1

κm t2/(m−2)
E0

(
1

cap (Wε(t)[0, 1])

)
, t→∞, (1.12)

where ε(t) = t1/(m−2)r(t) and cap (Wε[0, 1]) is the Newtonian capacity of Wε[0, 1] in Rm. All inverse
moments of cap (Wε[0, 1]) are finite for all ε > 0.

We expect that similar results hold when Tm is replaced by a smooth m-dimensional compact
connected Riemannian manifold without boundary. We further expect that the torsional rigidity
satisfies a strong law of large numbers for m ≥ 3 but not for m = 2.
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1.3 Asymptotic scaling of capacity of Wiener sausage

A key ingredient in the proof of Theorem 1.3 is the following scaling behaviour of the capacity of the
Wiener sausage for m ≥ 4. Let

C(t) =


log t

t
cap (W1[0, t]), m = 4,

1

t
cap (W1[0, t]), m ≥ 5.

(1.13)

Then there exist constants cm ∈ (0,∞), m ≥ 4, such that

C(t) = [1 + o(1)] cm in P0-probability as t→∞. (1.14)

In Section 7 we prove (1.14) for m ≥ 5 with the help of subadditivity. For m = 4, however, (1.14) is
presently an hypothesis we plan to investigate in a separate paper.

1.4 Discussion

We refer the reader to [14] and [4] for an overview on what is known about the geometry of the
complement of Brownian motion on the unit torus.

1. Theorems 1.1 and 1.2 identify the scaling of the expected torsional rigidity in low dimensions. This
scaling may be viewed in the following context. Let d(x, y) denote the distance between x, y ∈ Tm.
The distance of x to β[0, t] is denoted by

dt(x) = min
y∈β[0,t]

d(x, y). (1.15)

The inradius of B(t) is the random variable ρt defined by

ρt = max
x∈Tm

dt(x). (1.16)

A detailed analysis of ρt and related quantities was given in [12], [4] for m = 2 and in [11], [14] for
m ≥ 3. In [7] it was shown that for m = 2,

E0(ρt) = e−(πt)1/2[1+o(1)], t→∞, (1.17)

while for m ≥ 3,

E0(ρt) = [1 + o(1)]

(
m

(m− 2)κm

log t

t

)1/(m−2)

, t→∞, (1.18)

where κm is the Newtonian capacity of the ball with radius 1 in Rm,

κm = 4πm/2
/

Γ

(
m− 2

2

)
. (1.19)

A ball of radius r in Tm with r sufficiently small has a torsional rigidity proportional to rm+2. Theo-
rem 1.1 and (1.17) show that log♠(t) = −[1 + o(1)] 4(πt)1/2 = [1 + o(1)] logE0(ρt)

4 for m = 2, while
Theorem 1.2 and (1.18) show that ♠(t) � t−2 � E0(ρt)

5 for m = 3. Thus, for m = 2 the main contri-
bution to the asymptotic behaviour of log♠(t) comes from the components in B(t) that have a size of
order ρt (which are atypical; see [12] and [4]), while for m = 3 the main contribution to the asymptotic
behaviour of ♠(t) comes from regions in B(t) that have a size of order t−1 (which are typical; see [11]
and [14]), i.e., most of B(t) contributes.

2. For m = 2 it is shown in [4] that

ρt = t−1/8+o(1) e−(πt)1/2

in P0-probability, t→∞, (1.20)
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which is a considerable sharpening of (1.17). The proof is long and difficult. Combining (1.20) with
what we found in Theorem 1.1, we get the relation

♠(t) � t3/4+o(1) E0(ρt)
4, (1.21)

provided (1.20) also holds in mean (which is expected but has not been proved). Clearly, ♠(t) is not
dominated by the largest component in B(t) alone: smaller components contribute too as long as they
have a comparable size. Apparently, the number of such components is at least of order t3/4+o(1).

3. Theorem 1.3 identifies the scaling of the expected torsional rigidity in high dimensions. Via the
scaling relation in distribution

cap (Wε[0, 1]) = cap (εW1[0, ε−2]) = εm−2cap (W1[0, ε−2]), ε > 0, (1.22)

it follows from (1.13)–(1.14) that cap (Wε[0, 1]) = [1 + o(1)] cmε
m−4 in P0-probability as ε ↓ 0 when

m ≥ 5. In that case Theorem 1.3 yields the asymptotics

♠r(t)(t) = [1 + o(1)]
1

κmcm t r(t)m−4
, t→∞. (1.23)

It also follows from (1.13)–(1.14) that cap (Wε[0, 1]) = [1+o(1)] c4/2 log(1/ε) in P0-probability as ε ↓ 0
when m = 4. In that case Theorem 1.3 yields the asymptotics

♠r(t)(t) = [1 + o(1)]
2 log(1/t1/2r(t))

κ4c4 t
, t→∞. (1.24)

By the second half of (1.11), both (1.23) and (1.24) correspond to the regime where ♠r(t)(t) =

o(1/ log3 t). We have not attempted to improve this to o(1).

4. We did not investigate the regime for m ≥ 4 where r(t) decays so fast that ♠r(t)(t) diverges as

t → ∞. In that regime, the Brownian motion β̃ in (1.1)–(1.3) runs around Tm many times before it
hits Wr(t)[0, t], and the growth of ♠r(t)(t) depends on the global rather than the local properties of
Wr(t)[0, t].

5. We will see in Section 2 that various geometric quantities, such as inradius, principal Dirichlet
eigenvalue, square-integrated distance function and torsional rigidity, are closely related. In Section 6
we will give a quick proof of the following inequality relating the torsional rigidity to

λ1

(
B(t)

)
, λ1

(
Br(t)(t)

)
, (1.25)

the principal Dirichlet eigenvalue of B(t) for m = 2, 3 and Br(t)(t) for m ≥ 4.

Theorem 1.4 (a) If m = 2, 3, then for t large enough,

E0

(
λ1

(
B(t)

))
≥ ♠(t)−2/(m+2). (1.26)

(b) If m ≥ 4 and limt→∞♠r(t)(t) = 0, then for t large enough,

E0

(
λ1

(
Br(t)(t)

))
≥ ♠r(t)(t)−2/(m+2). (1.27)

Combining the result for m = 2 with what we found in Theorem 1.1, we obtain

E0

(
λ1

(
B(t)

))
� t−1/8 e2(πt)1/2

, (1.28)

where f � g means that f(t)/g(t) ≥ c > 0 for t large enough. In [7] we conjectured that logE0(λ1(B(t)))
= [1 + o(1)] 2(πt)1/2, which fits the lower bound in (1.28). However, a better estimate than (1.28) is
possible. Namely, in Section 2 we will see that λ1(B(t)) � 1/ρ2

t , and so Jensen gives the lower bound

5



E0(λ1(B(t)) ≥ 1/E0(ρt)
2. Assuming that the scaling in (1.20) also holds in mean (which is expected

but has not been proved), we get

E0

(
λ1

(
B(t)

))
� t1/4+o(1) e2(πt)1/2

, (1.29)

which is better than (1.28) by a factor t3/8+o(1). Presumably (1.29) captures the correct scaling
behaviour.

Outline. The remainder of this paper is organized as follows. In Section 2 we recall some analytical
facts about the torsional rigidity. In Sections 3–5 we prove Theorems 1.1–1.3, respectively. The proof
of Theorem 1.4 is given in Section 6, while the proof of the scaling in (1.13)–(1.14) for m ≥ 5 is given
in Section 7.

2 Analytical facts for the torsional rigidity

Let M be an m-dimensional Riemannian manifold without boundary that is both geodesically and
stochastically complete. In most this paper we focus on the case where M is the m-dimensional unit
torus Tm. However, the results mentioned below hold in greater generality. In Section 2.1 we give the
spectral representation of the Dirichlet heat kernel, in Section 2.2 we derive certain a priori estimates
on the torsional rigidity that will be needed later on.

2.1 Dirichlet heat kernel

For an open set Ω ⊂M with boundary ∂Ω, we denote the Dirichlet heat kernel by pΩ(x, y; t), x, y ∈ Ω,
t > 0. The integral defined by

uΩ(x; t) =

∫
Ω

pΩ(x, y; t) dy, (2.1)

is the unique weak solution of the boundary value problem

∂u(x;t)
∂t = ∆u(x; t), x ∈ Ω, t > 0,

u(x; 0) = 1, x ∈ Ω,

u(x; t) = 0, x ∈ ∂Ω, t ≥ 0,

(2.2)

where the latter boundary condition holds at all regular points of ∂Ω. The interpretation of (2.2) is
that uΩ(x; t) is the temperature at point x at time t when the initial temperature in Ω is 1 and the
temperature of ∂Ω is kept at 0. The heat content of Ω at time t is defined as

HΩ(t) =

∫
Ω

uΩ(x; t) dx. (2.3)

Since the Dirichlet heat kernel is non-negative and monotone in Ω, we have that

0 ≤ pΩ(x, y; t) ≤ pM (x, y; t). (2.4)

By the stochastic completeness of M , we have that

0 ≤ uΩ(x; t) ≤
∫
M

pM (x, y; t) dy = 1. (2.5)

In particular, if Ω has finite measure |Ω|, then

0 ≤ HΩ(t) ≤ |Ω|. (2.6)
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In that case we also have an eigenfunction expansion for the Dirichlet heat kernel in terms of the
Dirichlet eigenvalues 0 < λ1(Ω) ≤ λ2(Ω) ≤ · · · and a corresponding orthonormal set of eigenfunctions
ϕ1, ϕ2, · · · in L2(Ω):

pΩ(x, y; t) =
∑
j∈N

e−tλj(Ω)ϕj(x)ϕj(y). (2.7)

Since |Ω| < ∞, we have by Cauchy-Schwarz that
∫

Ω
dx |ϕj(x)| ≤ |Ω|1/2. Hence the ϕj are in L1(Ω),

and so in Lp(Ω) for all 1 ≤ p ≤ 2. Below we show that they are in fact in L∞(Ω), which by Hölder’s
inequality implies that they are in Lp(Ω) for all 1 ≤ p ≤ ∞.

2.2 A priori estimates

Lemma 2.1 below provides an upper bound on the Dirichlet eigenfunctions in terms of the Dirichlet
eigenvalues. Lemma 2.2 below states upper and lower bounds on the torsional rigidity that will be
needed later on.

Lemma 2.1 Suppose that supx∈M p(x, x; t) <∞ for all t > 0. Then

‖ϕj‖2L∞(Ω) ≤ e sup
x∈M

pM (x, x;λj(Ω)−1), j ∈ N. (2.8)

Proof. Since |Ω| < ∞, the spectrum of the Dirichlet Laplacian on Ω is discrete. By (2.7) and the
domain monotonicity of the Dirichlet heat kernel [10], we have that

ϕj(x)2 ≤ e pΩ(x, x;λj(Ω)−1) ≤ e pM (x, x;λj(Ω)−1). (2.9)

Taking first the supremum over x ∈M in the right-hand side of (2.9) and subsequently in the left-hand
side of (2.9), we get (2.8).

It follows from Parseval’s formula that

HΩ(t) =
∑
j∈N

e−tλj(Ω)

(∫
Ω

ϕj(x) dx

)2

≤ e−tλ1(Ω)
∑
j∈N

(∫
Ω

ϕj(x) dx

)2

= e−tλ1(Ω)|Ω|. (2.10)

The unique weak solution of the boundary value problem

−∆w(x) = 1, x ∈ Ω,

w(x) = 0, x ∈ ∂Ω,
(2.11)

is given by

wΩ(x) =

∫ ∞
0

uΩ(x; t) dt. (2.12)

The torsional rigidity of Ω is defined by

T (Ω) =

∫
Ω

wΩ(x) dx. (2.13)

It follows from (2.3), (2.12)–(2.13) and Fubini’s theorem that

T (Ω) =

∫ ∞
0

HΩ(t) dt, (2.14)

i.e., the torsional rigidity is the integral of the heat content. Let

δΩ(x) = min
y∈Rm\Ω

d(x, y) (2.15)

denote the distance of x ∈ Ω to Rm\Ω.
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Lemma 2.2 (a) Let M be a Riemannian manifold that is both geodesically and stochastically complete.
Let Ω be an open subset of M with |Ω| <∞. Then

T (Ω) ≤ λ1(Ω)−1|Ω|. (2.16)

(b) Suppose that M and Ω satisfy the hypotheses in (a). Then

T (Ω) ≥ λ1(Ω)−1‖ϕ1‖−2
L∞(Ω). (2.17)

(c) Let Ω ⊂ Rm. Then

T (Ω) ≥ 1

2m

∫
Ω

δΩ(x)2 dx. (2.18)

(d) Let Ω ⊂ R2 be simply connected and δΩ ∈ L2(Ω). Then

T (Ω) ≤ 16

∫
Ω

δΩ(x)2 dx. (2.19)

(e) Let Ω ⊂ Tm. Then Ω can be embedded in Rm if and only if maxmi=1 |xi − yi| ≤ 1
2 for all x =

(x1, . . . , xm) ∈ Ω and y = (y1, . . . , ym) ∈ Ω. If Ω ⊂ T2 can be embedded in R2, then

1

4

∫
Ω

δΩ(x)2 dx ≤ T (Ω) ≤ 16

∫
Ω

δΩ(x)2 dx. (2.20)

Proof. (a) Since |Ω| <∞, the spectrum of the Dirichlet Laplacian acting in L2(Ω) is discrete. Hence
(2.16) follows by integrating (2.10) over t ∈ [0,∞).
(b) By the first identity in (2.10) and (2.14), we have that

T (Ω) ≥
∫ ∞

0

e−tλ1(Ω) dt

(∫
Ω

ϕ1(x) dx

)2

= λ1(Ω)−1

(∫
Ω

ϕ1(x) dx

)2

. (2.21)

By Lemma 2.1, we have that ‖ϕ1‖L∞(Ω) <∞, and so

1 =

∫
Ω

ϕ1(x)2 dx ≤ ‖ϕ1‖L∞(Ω)

∫
Ω

|ϕ1(x)| dx. (2.22)

Inequality (2.17) follows from (2.21)–(2.22) and the fact that ϕ1 does not change sign.
(c) For every x ∈ Ω the open ball BδΩ(x)(x) with centre x and radius δ(x) is contained in Ω. Therefore,
by domain monotonicity, the expected exit time satisfies wΩ(y) ≥ wBδ(x)(x)(y). Hence, by (2.11),

wΩ(y) ≥ wBδ(x)(x)(y) =
δΩ(x)2 − |x− y|2

2m
, |y − x| ≤ δΩ(x). (2.23)

Choose y = x, integrate over x ∈ Ω and use (2.13), to get the claim.
(d) It is well known that the Dirichlet Laplacian on a simply connected proper subset of R2 satisfies a
strong Hardy inequality: ∫

Ω

|∇v(x)|2 dx ≥ 1

16

∫
Ω

v(x)2

δΩ(x)2
dx ∀ v ∈ C∞c (Ω). (2.24)

Theorem 1.5 in [8] implies (2.19).
(e) Recall that the metric on Tm is given by

d(x, y) =

(
m∑
i=1

min
{
|xi − yi|, 1− |xi − yi|

}2

)1/2

. (2.25)

Note that diam(Tm) = 1
2

√
m because min{|xi − yi|, 1 − |xi − yi|} ≤ 1

2 . If |xi − yi| ≤ 1
2 for all i, then

d(x, y) = |x − y|. Next, suppose that d(x, y) = |x − y|. Then
∑m
i=1 min{|xi − yi|, 1 − |xi − yi|}2 =∑m

i=1 |xi− yi|2. Let I = {i : |xi− yi| > 1
2}. Then

∑
i∈I(1− 2|xi− yi|) = 0. We therefore conclude that

I = ∅. Finally, (2.20) follows from (2.18) for m = 2 and (2.19).
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3 Torsional rigidity for m = 2

In Section 3.1 we show that the inverse of the principal Dirichlet eigenvalue of B(1) = T2\β[0, 1] has a
finite exponential moment. In Section 3.2 we use this result to prove Theorem 1.1.

3.1 Exponential moment of the inverse principal Dirichlet eigenvalue

Lemma 3.1 There exists a c > 0 such that

E0

(
exp

[
c

λ1(B(1))

])
<∞. (3.1)

Proof. Let cap (A) denote the logarithmic capacity of a measurable set A ⊂ R2. It is well known (see
[16]) that if cap (A) > 0 and εA is a homothety of A by a factor ε, then

cap (εA) =
2π

log(1/ε)
[1 + o(1)], ε ↓ 0, (3.2)

and

λ1(T2\εA) =
2π

log(1/ε)
[1 + o(1)], ε ↓ 0. (3.3)

In particular, if Lε is a straight line segment of length ε, then there exists a c′ ∈ (0,∞) such that

λ1(T2\Lε) ≥
c′

log(1/ε)
, 0 < ε ≤ 1

2 . (3.4)

Since cap (β[0, 1]) ≥ cap (L|β(1)|) ≥ cap (L
(
1
2∧|β(1)|)

), we get

E0

(
exp

[
c

λ1(B(1))

])
≤ E0

(
( 1

2 ∧ |β(1)|)−c/c
′
)

≤ ( 1
2 )−c/c

′
+ E0

(
|β(1)|−c/c

′
)

= ( 1
2 )−c/c

′
+

∫
R2

|x|−c/c
′ 1

4π
e−|x|

2/4 dx, (3.5)

which is finite when c/c′ < 2.

3.2 Proof of Theorem 1.1

Proof. The proof comes in 6 Steps, and is based on Lemmas 3.2–3.5 below. We use the following
abbreviations (recall (1.15) and (1.25)):

D2
t =

∫
T2

dt(x)2 dx, λt = λ1(B(t)). (3.6)

1. Note that β[0, t] is a closed subset of T2 a.s. Hence B(t) is open and its components are open and
countable. Let {Ω1(t),Ω2(t), · · · } enumerate these components. Let

φi(t) = sup
x,y∈Ωi(t)

d(x, y), (3.7)

and abbreviate

Iu(t) = {i ∈ N : φi(t) ≤ u}, Eu(t) =

{
sup
i∈N

φi(t) > u

}
, u ∈ (0, 1). (3.8)
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It follows from the proof of Lemma 2.2(d) that if i ∈ I1/2(t), then Ωi(t) can be isometrically embedded
in R2. Since β[0, t] is continuous a.s., each Ωi(t) is simply connected. Since the torsional rigidity is
additive on disjoint sets we have that

T (B(t)) =
∑
i∈N
T (Ωi(t)) =

∑
i∈I1/2(t)

T (Ωi(t)) +
∑

i/∈I1/2(t)

T (Ωi(t)). (3.9)

2. The first term in the right-hand side of (3.9) is estimated from above by Lemma 2.2(c). This gives
(recall (2.15))∑

i∈I1/2(t)

T (Ωi(t)) ≤ 16
∑

i∈I1/4(t)

∫
Ωi(t)

δΩi(t)(x)2 dx ≤ 16
∑
i∈N

∫
Ωi(t)

δΩi(t)(x)2 dx = 16D2
t . (3.10)

The second term in the right-hand side of (3.9) is estimated from above by Lemma 2.2(a). This gives∑
i/∈I1/2(t)

T (Ωi(t)) ≤
∑

i/∈I1/2(t)

λ−1
t |Ωi(t)| ≤ 1E1/2(t) λ

−1
t

∑
i∈N
|Ωi(t)| = 1E1/2(t) λ

−1
t . (3.11)

By Cauchy-Schwarz, this term contributes to ♠(t) at most

E0

(
1E1/2(t) λ

−1
t

)
≤
(
P0(E1/2(t))

)1/2 (E0

(
λ−2
t

))1/2

. (3.12)

To bound the probability in the right-hand side of (3.12) from above, we let {Q1, · · · , QN}, N = 104, be
any open disjoint collection of squares in T2, each with area 10−4 and not containing 0. Furthermore,
we let Q̄N,ε be the open ε-neighbourhood of the union of the boundaries of these squares with ε = 10−3.
Then β[0, 1] starting at 0 has a positive probability p′ = p′(N, ε) of making a closed loop around each
of these squares and staying inside Q̄N,ε. Translating {Q1, · · · , QN} such that these squares do not
contain β(1), we find that β[1, 2] starting at β(1) has a positive probability p′ of making a closed
loop around each of these translated squares and staying inside Q̄N,ε + β(1). Continuing this way, by
induction we find that the probability of β[0, t] not making any of these closed translated loops is at
most (1− p′)btc, where b·c denotes the integer part. Hence P0(supi∈N φi(t) >

1
2 ) ≤ (1− p′)btc, and so

P0(E1/2(t)) ≤ e−pt, t ≥ 2, (3.13)

for some p > 0. We conclude that

♠(t) ≤ 16E0

(
D2
t

)
+ e−pt/2

(
E0(λ−2

t )
)1/2

, t ≥ 2. (3.14)

Since t 7→ λt is non-decreasing, Lemma 3.1 implies that the second term decays exponentially fast in
t and therefore is harmless for the upper bound in (1.9).

3. To derive a lower bound for ♠(t), we note that by Lemma 2.2(d) we have

T (B(t)) =
∑
i∈N
T (Ωi(t)) ≥

∑
i∈I1/2(t)

T (Ωi(t))

≥ 1
4

∑
i∈I1/2(t)

∫
Ωi(t)

δΩi(t)(x)2 dx ≥ 1
4

∑
i∈N

∫
Ωi(t)

δΩi(t)(x)2 dx− 1
4

∑
i/∈I1/2(t)

∫
Ωi(t)

δΩi(t)(x)2 dx

≥ 1
4D

2
t − 1

4

∑
i/∈I1/2(t)

1E1/4(t)

∫
Ωi(t)

δΩi(t)(x)2 dx ≥ 1
4D

2
t − 1

81E1/4(t), (3.15)

where in the last inequality we use that δΩi(t)(x) ≤ diam(T2) = 1
2

√
2 and |T2| = 1. We conclude by

(3.13) that
♠(t) ≥ 1

4E0

(
D2
t

)
− e−pt, t ≥ 2. (3.16)
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The second term is again harmless for the lower bound in (1.9).

4. The estimates in (3.14) and (3.16) show that ♠(t) � E0(D2
t ) up to exponentially small error terms.

In order to obtain the leading order asymptotic behaviour of E0(D2
t ), we make a dyadic partition of T2

into squares as follows. Partition T2 into four 1-squares of area 1
4 each, and proceed by induction to

partition each k-square into four (k+ 1)-squares. So, T2 is partitioned into 22k k-squares. We define a
k-square to be good when the path β[0, t] does not hit this square, but does hit the unique (k−1)-square
to which it belongs. Clearly, if x belongs to a good k-square, then dist(x, β[0, t]) ≤ (2

√
2)2−k. Hence,

as the area of each k-square is 2−2k, we get

E
(
D2
t

)
≤ 8

∑
k∈N

2−4k E (# good k-squares) , (3.17)

where we write E =
∫
T2 dxEx, which is the same as E0 for the quantity under consideration, by

translation invariance. To estimate the right-hand side of (3.17) we need three lemmas.

Lemma 3.2 For k ∈ N, let pk(t) = P(β[0, t] ∩ Sk) = ∅), where Sk is any of the k-squares. Then

pk(t) ≤ e−tλ1(T2\Sk). (3.18)

Proof. Let pT2\Sk(x, y; t) be the Dirichlet heat kernel for T2\Sk. By the eigenfunction expansion in
(2.7), we have that

pk(t) =

∫
T2\Sk

dx

∫
T2\Sk

dy pT2\Sk(x, y; t) =

∫
T2\Sk

dx

∫
T2\Sk

dy
∑
j∈N

e−tλj(T
2\Sk)ϕj(x)ϕj(y)

≤ e−tλ1(T2\Sk)
∑
j∈N

(∫
T2\Sk

dxϕj(x)

)2

= e−tλ1(T2\Sk)|T2\Sk| ≤ e−tλ1(T2\Sk), (3.19)

where we use Parseval’s identity in the last equality.

Lemma 3.3 There exists a C <∞ such that, for all k ∈ N,∣∣∣∣λ1(T2\Sk)− 2π

k log 2

∣∣∣∣ ≤ C

k2
. (3.20)

Proof. By [18, Theorem 1] we have that, for any disc Dε ⊂ T2 with radius ε,

λ1(T2\Dε) =
2π

log(1/ε)
+O

(
[log(1/ε)]−2

)
, ε ↓ 0. (3.21)

This implies, by monotonicity and continuity of ε 7→ λ1(T2\Dε), the existence of a C ′ <∞ such that∣∣∣∣λ1(T2\Dε)−
2π

log(1/ε)

∣∣∣∣ ≤ C ′[log(1/ε)]−2, 0 < ε ≤ 1
2 . (3.22)

For Sk ⊂ T2 there exist two discs D1 and D2, with the same centre and radii 2−k−1 and 2−k−1
√

2,
such that D1 ⊂ Sk ⊂ D2. Hence λ1(D2) ≤ λ1(Sk) ≤ λ1(D1), and (3.20) follows by applying (3.22) to
ε = 2−k−1 and ε = 2−k−1

√
2, respectively.

Lemma 3.4 ∫
T2

dx Px(Sk is a good k-square) = pk(t)− pk−1(t). (3.23)
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Proof. Let Ek be the event that Sk is not hit. Since Sk is a good k-square if and only if the event
Ek ∩ Eck−1 occurs, the lemma follows because Ek−1 ⊂ Ek.

5. We are now ready to estimate E(D2
t ). By (3.17) and Lemma 3.4,

E
(
D2
t

)
≤ 8

∑
k∈N

2−2k

∫
T2

dx Px(Sk is a good k-square) = 8
∑
k∈N

2−2k[pk(t)− pk−1(t)] = 6
∑
k∈N

2−2kpk(t),

(3.24)
where p0(t) = 0. In order to bound this sum from above we consider the contributions coming from
k = 1, . . .K and k = K + 1, . . . , b 1

4 t
1/2c and k > b 1

4 t
1/2c, respectively, where b·c denotes the integer

part, and we choose
K = b(C log 2)/πc (3.25)

with C the constant in (3.20). Since

K∑
k=1

2−2kpk(t) ≤
K∑
k=1

2−2kpK(t) ≤ e−tλ1(T2\SK), (3.26)

the first contribution is exponentially small in t. For k = K+ 1, . . . , b 1
4 t

1/2c we have C/k2 ≤ π/k log 2,
and hence by Lemmas 3.2–3.3,

b 1
4 t

1/2c∑
k=K+1

2−2kpk(t) ≤
b 1

4 t
1/2c∑

k=K+1

2−2ke−
πt

k log 2 ≤
b 1

4 t
1/2c∑

k=K+1

2−2ke−
4πt1/2

log 2 = O(e−4πt1/2

), (3.27)

and so the second contribution is o(t1/4e−4(πt)1/2

). Finally, for k > b 1
4 t

1/2c we have eCt/k
2 ≤ e16C , and

hence ∑
k>b 1

4 t
1/2c

2−2k pk(t) ≤ e16C
∑

k>b 1
4 t

1/2c

e−2k log 2− 2πt
k log 2 . (3.28)

The summand is increasing for 1 ≤ k ≤ (πt)1/2/ log 2 and decreasing for k ≥ (πt)1/2/ log 2. Moreover,

it is bounded from above by e−4(πt)1/2

. We conclude that for t→∞,∑
k>b 1

4 t
1/2c

e−2k log 2− 2πt
k log 2 ≤ 2 e−4(πt)1/2

+

∫
[0,∞)

dk e−2k log 2− 2πt
k log 2

= 2 e−4(πt)1/2

+
(4πt)1/2

log 2
K1

(
4(πt)1/2

)
=

π3/4

√
2 log 2

t1/4 e−4(πt)1/2

[1 + o(1)], (3.29)

where we use formula 3.324.1 from [15] and formula 9.7.2 from [1]. Putting the estimates in (3.14) and
(3.24)–(3.29) together, we obtain that

♠(t) ≤ 96π3/4 e16C

√
2 log 2

t1/4 e−4(πt)1/2

[1 + o(1)]. (3.30)

This is the desired upper bound in (1.9).

6. To obtain a lower bound for E(D2
t ), we consider a good k-square. This square contains a square with

the same centre, parallel sides and area 2−2k−2. The distance from this square to β[0, t] is bounded
from below by 2−k−2. Hence

E
(
D2
t

)
≥ 1

16

∑
k∈N

2−2k

∫
T2

dx Px(Skis a good k-square)

= 1
16

∑
k∈N

2−2k [pk(t)− pk−1(t)] = 3
64

∑
k∈N

2−2k pk(t),
(3.31)

since p0(t) = 0. The following lemma provides a lower bound for the right-hand side of (3.31).
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Lemma 3.5 There exists a k0 ∈ N such that for all k ≥ k0,

pk(t) ≥ 1
4e
−tλ1(T2\Sk). (3.32)

Proof. By the eigenfunction expansion in (2.7) we have that

pk(t) =

∫
T2\Sk

dx

∫
T2\Sk

dy
∑
j∈N

e−tλj(T
2\Sk)ϕj(x)ϕj(y)

≥ e−tλ1(T2\Sk)

(∫
T2\Sk

dxϕ1(x)

)2

. (3.33)

By the results of [18], ‖ϕ1 − 1‖L2(T2\Sk) → 0 as k →∞. This implies that |
∫
T2\Sk dxϕ1(x)| ≥ 1

2 for k

sufficiently large.

Combining (3.20), (3.24), (3.31) and Lemma 3.5, we have that

E
(
D2
t

)
≥ 3

256

∑
{k∈N : k≥k0}

e−2k log 2− 2πt
k log 2−

Ct
k2 . (3.34)

Now let t be such that πt/ log 2 > k0. Then

E
(
D2
t

)
≥ 3

256

∑{
k∈N : k≥ (πt)1/2

log 2

} e−2k log 2− 2πt
k log 2−

Ct
k2

≥ 3
256 e

−C
∑{

k∈N : k≥ (πt)1/2

log 2

} e−2k log 2− 2πt
k log 2 . (3.35)

Because the summand is strictly decreasing in k, we can replace the sum over k by an integral with a
minor correction. This gives

E
(
D2
t

)
≥ 3

256 e
−C

(∫ ∞
(πt)1/2

log 2

dk e−2k log 2− 2πt
k log 2 − e−4(πt)1/2

)
. (3.36)

We have∫ ∞
(πt)1/2

log 2

dk e−2k log 2− 2πt
k log 2 =

(πt)1/2

log 2

∫ ∞
1

dx e−2(πt)1/2(x+ 1
x ) ≥ (πt)1/2

log 4

∫ ∞
0

dx e−2(πt)1/2(x+ 1
x )

=
(πt)1/2

log 2
K1

(
4(πt)1/2

)
=

π3/4

23/2 log 2
t1/4e−4(πt)1/2

[1 + o(1)], (3.37)

where we use once more formulas 3.324.1 from [15] and 9.7.2 from [1]. Combining (3.16), (3.36) and
(3.37), we get

♠(t) ≥ 3π3/4 e−C

223/2 log 2
t1/4 e−4(πt)1/2

[1 + o(1)]. (3.38)

This is the desired lower bound in (1.9).

4 Torsional rigidity for m = 3

It is well known that cap (β[0, 1]) has a strictly positive Newton capacity when m = 3. In Section 4.1
we show that the inverse of the capacity of β[0, 1] on R3 has a finite exponential moment. In Section 4.2
we show that for every closed set K ⊂ T3 that has a small enough diameter the principal Dirichlet
eigenvalue of T3\K is bounded from below by a constant times the capacity of K. (The same is true
for m ≥ 4, a fact that will be needed in Section 5.) In Section 4.3 we use these results to prove
Theorem 1.2.
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4.1 Exponential moment of the inverse capacity

Lemma 4.1 Let m = 3. Then there exists a c > 0 such that

E
(

exp

[
c

cap (β[0, 1])

])
<∞. (4.1)

Proof. We use the fact that, for any compact set A ⊂ R3,

1

cap (A)
= inf

[∫
R3

∫
R3

µ(dx)µ(dy)

4π |x− y|
: µ is a probability measure on A

]
. (4.2)

As test probability measure we choose the sojourn measure of β[0, t], i.e.,

µβ[0,1](C) =

∫ 1

0

1C(β(t)) dt, C ⊂ R3, (4.3)

for which ∫
R3

∫
R3

µβ[0,1](dx)µβ[0,1](dy)

4π |x− y|
=

∫ 1

0

ds

∫ 1

0

dt
1

4π |β(s)− β(t)|
. (4.4)

It therefore suffices to prove that

E0

(
exp

[
c

∫ 1

0

ds

∫ 1

0

dt
1

|β(s)− β(t)|

])
<∞ (4.5)

for small enough c > 0. A proof of this fact is hidden in [13]. For the convenience of the reader we
write it out here.

By Cauchy-Schwarz and Jensen, we have

E0

(
exp

[
c

∫ 1

0

ds

∫ 1

0

dt
1

|β(s)− β(t)|

])
≤ E0

(
exp

[
2c

∫ 1

0

ds

∫ 1

s

dt
1

|β(s)− β(t)|

])
≤ E0

(
exp

[
2c

∫ 1

0

ds

∫ 1+s

s

dt
1

|β(s)− β(t)|

])
≤
∫ 1

0

ds E0

(
exp

[
2c

∫ 1+s

s

dt
1

|β(s)− β(t)|

])
= E0

(
exp

[
2c

∫ 1

0

dt
1

|β(t)|

])
. (4.6)

It therefore suffices to prove that the right-hand side is finite for small enough c > 0. Expanding the
exponent, we get

E0

(
exp

[
2c

∫ 1

0

dt
1

|β(t)|

])
=
∑
k∈N0

(2c)k

k!
E0

([∫ 1

0

dt
1

|β(t)|

]k)

=
∑
k∈N0

(2c)k
∫

0≤t1<···<tk≤1

E0

(
1

|β(t1)| × · · · × |β(tk)|

)
dt1 × · · · × dtk.

(4.7)

The integrand equals

E0

(
1

|β(t1)| × · · · × |β(tk−1)|
E0

(
1

|β(tk−1) + [β(tk)− β(tk−1)]|

∣∣∣∣Ftk−1

))
, (4.8)

where Ft is the sigma-algebra of β up to time t. However,

E0

(
1

|β(tk−1) + [β(tk)− β(tk−1)]|

∣∣∣∣Ftk−1

)
= E0

(
1

|x+
√
tk − tk−1β(1)|

)∣∣∣∣
x=β(tk−1)

≤ sup
x∈R3

E0

(
1

|x+
√
tk − tk−1β(1)|

)
≤ E0

(
1

|
√
tk − tk−1β(1)|

)
≤ γ√

tk − tk−1
(4.9)
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with γ = E0(|β(1)|−1) < ∞, where in the second inequality we use that |x+ β(1)| is stochastically
larger than |β(1)| for any x 6= 0. Iterating (4.8)–(4.9), we get

E0

(
1

|β(t1)| × · · · × |β(tk)|

)
≤ γk

k∏
i=1

1√
ti − ti−1

, (4.10)

where t0 = 0. Hence

E0

(
exp

[
2c

∫ 1

0

dt
1

|β(t)|

])
=
∑
k∈N0

(2c)kγk
∫

0≤t1<···<tk≤1

dt1√
t1
× · · · × dtk√

tk − tk−1

≤
∑
k∈N0

(2c)kγk
(∫ 1

0

dt
1√
t

)k
=
∑
k∈N0

(4c)kγk, (4.11)

which is finite for c < 1/4γ.

4.2 Principal Dirichlet eigenvalue and capacity

Lemma 4.2 Let m ≥ 3, and let K be a closed subset of Tm with diam(K) ≤ 1
2 . Then

λ1(Tm\K) ≥ km cap (K), (4.12)

where

km =

∫ 1

0

ds (4πs)−m/2 e−m/4s, (4.13)

and cap (K) is the Newtonian capacity of K embedded in Rm.

Proof. Since diam(K) ≤ 1
2 , K can be embedded in Rm by Lemma 2.2(e). We let K ⊂ [− 1

2 ,
1
2 )m ⊂ Rm,

identify [− 1
2 ,

1
2 )m with Tm, and define K̃ ⊂ Rm by K̃ = ∪k∈Zm{k+K}. Let ϕ1 be the first eigenfunction

on Tm\K with Dirichlet boundary conditions on K, and let λ1(Tm\K) be the corresponding first
Dirichlet eigenvalue. Then

e−tλ1(Tm\K)ϕ1(x) =

∫
Tm\K

dy pTm\K(x, y; t)ϕ1(y). (4.14)

Integrating both sides of this identity over x ∈ Tm\K, we get

e−tλ1(Tm\K)

∫
Tm\K

dxϕ1(x) =

∫
Tm\K

dxϕ1(x)−
∫
Tm\K

dy Py(TK ≤ t)ϕ1(y), (4.15)

where TK is the first hitting time of K by Brownian motion on Tm. It follows that for any t > 0,

λ1(Tm\K) = −1

t
log

(
1−

∫
Tm\K dy Py(TK ≤ t)ϕ1(y)∫

Tm\K dy ϕ1(y)

)

≥ 1

t

∫
Tm\K dy Py(TK ≤ t)ϕ1(y)∫

Tm\K dy ϕ1(y)
≥ 1

t
inf
y∈Tm

Py(TK ≤ t), (4.16)

where we use the inequality − log(1− z) ≥ z, z ∈ [0, 1). Let β̃ be Brownian motion on Rm, and let T̃K̃
be the first hitting time of K̃ by β̃. Then

Py(TK ≤ t) = P̃y(T̃K̃ ≤ t) ≥ P̃y(T̃K ≤ t) ≥ P̃y(L̃K ≤ t), (4.17)
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where L̃K is the last exit time from K by β̃. Let µK denote the equilibrium measure on K in Rm.
Then (see [20])

P̃y(L̃K ≤ t) =

∫
K

µK(dz)

∫ t

0

ds (4πs)−m/2 e−|z−y|
2/4s. (4.18)

By (4.17)–(4.18),

inf
y∈Tm

Py(TK ≤ t) = inf
y∈
[
− 1

2 ,
1
2

)m P̃y(T̃K̃ ≤ t) ≥ inf
y∈
[
− 1

2 ,
1
2

)m ∫
K

µK(dz)

∫ t

0

ds (4πs)−m/2e−|z−y|
2/4s.

(4.19)

But |z − y| ≤
√
m for z ∈ K and y ∈ [− 1

2 ,
1
2 )m. Hence the right-hand side of (4.19) is bounded from

below by cap (K)
∫ t

0
ds (4πs)−m/2 e−m/4s. We now get the claim by choosing t = 1 in (4.16).

We note that if m = 3 and K = Bε ⊂ T3 is a closed ball with radius ε, then λ1(T3\Bε) =
cap (Bε)[1 + o(1)] as ε ↓ 0 (see [16]). In that case, since k3 = 0.0101 · · · , we see that the constant in
(4.12) is off by a large factor.

4.3 Proof of Theorem 1.2

Proof. Write, recalling (1.1)–(1.5) and using Fubini’s theorem,

♠(t) = (E0 ⊗ Ẽ)
(
τ̃T3\β[0,t]

)
= (E0 ⊗ Ẽ)

(∫ ∞
0

ds 1{τ̃T3\β[0,t]>s}

)
= (E0 ⊗ Ẽ)

(∫ ∞
0

ds 1{β̃[0,s]∩β[0,t]=∅}

)
,

(4.20)
where Ẽ denotes expectation over β̃ with β̃(0) drawn uniformly from T3. By symmetry, we may replace
E0 ⊗ Ẽ by Ẽ0 ⊗ E. The proof comes in 7 Steps.

1. Pick η : (0,∞)→ (0,∞) such that

lim
t→∞

η(t) log t = 0, lim
t→∞

t
√
η(t)

log2 t
=∞. (4.21)

We begin by showing that the integral over s ∈ [η(t),∞) decays faster than any negative power of t
and therefore is negligible. Indeed, for any K(t) ∈ [η(t),∞) we have, by the spectral decomposition in
(2.7),

(Ẽ0 ⊗ E)

(∫ K(t)

η(t)

ds 1{β̃[0,s]∩β[0,t]=∅}

)
≤ Ẽ0

(∫ K(t)

η(t)

ds e−tλ1(T3\β̃[0,s])

)
. (4.22)

By Lemma 4.2, λ1(T3\A) ≥ c3 cap (A) for every closed set A ⊂ B1/4(0) ⊂ T3 (in the lower bound we
interpret A as a subset of R3). Hence the right-hand side of (4.22) is bounded from above by

K(t) Ẽ0

(
e−c3t cap (β̃[0,η(t)]∩B1/4(0))

)
, (4.23)

where we use that cap (β̃[0, s]) ≥ cap (β̃[0, η(t)]) for s ≥ η(t). In Step 2 we show that P0(β̃[0, η(t)] (
B1/4(0)) decays faster than any negative power of t. Hence we may replace cap (β̃[0, η(t)]∩B1/4(0)) by

cap (β̃[0, η(t)] in (4.23) at the cost of a negligible error term o(t−2). Next, we note that cap (β̃[0, η(t)]
is equal to

√
η(t) cap (β̃[0, 1]) in distribution. Moreover, since au+bu−1 ≥ 2

√
ab for all a, b, u ∈ (0,∞),

we have, for any c > 0,

e−c3t
√
η(t) cap (β̃[0,1]) = e−c3t

√
η(t) cap (β̃[0,1])−c cap (β̃[0,1])−1

ec cap (β̃[0,1])−1

≤ e−2
√
c3ct
√
η(t)ec cap (β̃[0,1])−1

.
(4.24)
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By Lemma 4.1, we therefore have

Ẽ0

(
e−c3t cap (β̃[0,η(t)])

)
≤ C e−2

√
c3ct
√
η(t) + o(t−2) (4.25)

for some C <∞ and c > 0 small enough. Hence (4.23) is O(K(t)−1) when we pick

K(t) = e

√
c3ct
√
η(t). (4.26)

The second half of (4.21) ensures that K(t) grows faster than any positive power of t, and so we
conclude that the integral in the left-hand side of (4.22) is o(t−2). To estimate

(Ẽ0 ⊗ E)

(∫ ∞
K(t)

ds 1{β̃[0,s]∩β[0,t]=∅}

)
(4.27)

we reverse the roles of β̃ and β̃, and do the same estimate using that cap (β[0, t]) ≥ cap (β[0, η(t)]) for
t ∈ [η(t),∞). This leads to

(Ẽ0 ⊗ E)

(∫ ∞
K(t)

ds 1{β̃[0,s]∩β[0,t]=∅}

)
≤ C

∫ ∞
K(t)

ds e−2
√
c3cs
√
η(t) + o(t−2)

= [1 + o(1)]C

√
K(t)

c3c
√
η(t)

e−2
√
c3cK(t)

√
η(t) + o(t−2),

(4.28)

in which the first term is even much smaller than o(t−2).

2. The probability that β̃ leaves the ball of radius η̃(t) = (M(t) η(t) log t)1/2 prior to time η(t) decays
faster than any negative power of t when limt→∞M(t) = ∞. Indeed, by Lévy’s maximal inequality
([22, Theorem 3.6.5]),

P̃0

(
∃ s ∈ [0, η(t)] : β̃[0, s] /∈ Bη̃(t)(0)

)
≤ 2 P̃0

(
β̃(η(t)) /∈ Bη̃(t)(0)

)
= O(exp

[
− 1

8 η̃
2(t)/η(t)

]
) = O(exp[− 1

8M(t) log t]) = O(t−
1
8M(t)) = o(t−2).

(4.29)

Hence, with a negligible error we may restrict the expectation in the right-hand side of (4.20) to the
event

Et = {β̃[0, η(t)] ⊂ Bη̃(t)(0)}. (4.30)

The first half of (4.21) guarantees that limt→∞ η̃(t) = 0 for some choice ofM(t) with limt→∞M(t) =∞.

3. Fix 0 < δ < 1
8 , and consider the successive excursions of β between the boundaries of the balls

B1/4(0) and Bδ(0), i.e., put σ0 = inf{u ≥ 0: β(u) ∈ ∂B1/4(0)} and, for k ∈ N,

σ̄k = inf{u ≥ σk−1 : β(u) ∈ ∂Bδ(0)},
σk = inf{u ≥ σ̄k : β(u) ∈ ∂B1/4(0)}.

(4.31)

For k ∈ N, let βk = β([σk−1, σk]) denote the k-th excursion from ∂B1/4(0) to ∂Bδ(0) and back. Let
X̄k = β(σ̄k) denote the location where this excursion first hits ∂Bδ(0). Clearly, under the law P,
(σ̄k − σk−1, σk − σ̄k, X̄k)k∈N is a uniformly ergodic Markov chain on (0,∞)2 × T3. Let

Nδ(t) = sup{k ∈ N : σk ≤ t} (4.32)

be the number of completed excursions prior to time t. By the renewal theorem, we have

lim
t→∞

t−1E(Nδ(t)) =
1

eδ + e′δ
, eδ = E(σ̄1 − σ0), e′δ = E(σ1 − σ̄1). (4.33)
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Moreover, for every δ′ > 0 there exists a Cδ(δ
′) > 0 such that

P
(
t−1|Nδ(t)− (eδ + e′δ)

−1| ≥ δ′
)
≤ e−Cδ(δ

′)t, t ≥ 0. (4.34)

4. Fix β̃[0, η(t)] ⊂ Bη̃(t)(0). For s ∈ [0, η(t)] and N ∈ N, the probability that the first N excursions do

not hit β̃[0, s] equals

Π
(
N ; β̃[0, s]

)
= E

(
N∏
k=1

1{β̃[0,s]∩βk=∅}

)
= E

(
E

(
N∏
k=1

[
1− p

(
X̄k, X̄k+1; β̃[0, s]

)] ∣∣∣∣∣ FN+1

))
, (4.35)

where FN+1 is the sigma-algebra generated by X̄k, 1 ≤ k ≤ N + 1, and

p
(
x, y; β̃[0, s]

)
= Pyx

(
σβ̃[0,s] <∞

)
, x, y ∈ ∂Bδ(0), (4.36)

is the probability that a Brownian motion, starting from x ∈ ∂Bδ(0) and conditioned to re-enter Bδ(0)
at y ∈ ∂Bδ(0) after it has exited B1/4(0), hits β̃[0, s]. The following lemma gives a sharp estimate of

p(x, y; β̃[0, s]).

Lemma 4.3 If η̃(t) ≤ 1
2δ and β̃[0, η(t)] ⊂ Bη̃(t)(0), then

p
(
x, y; β̃[0, s]

)
= [1 +O(δ)]

{
(κ3δ)

−1cap (β̃[0, s]) +O(δ−2) η̃2(t)
}
, δ ↓ 0, (4.37)

for all x, y ∈ ∂Bδ(0) and s ∈ [0, η(t)].

Proof. We begin by showing that if η̃(t) ≤ 1
2δ, then∣∣Px(σβ̃[0,s] <∞

)
− (κ3δ)

−1cap (β̃[0, s])
∣∣ ≤ 2δ−2η̃2(t) (4.38)

for all x ∈ ∂Bδ(0) and β̃[0, s] ⊂ Bη̃(t)(0). Indeed, for any compact set K ⊂ R3, we have

cap (K) =

∫
K

µK(dy), Px(σK <∞) =

∫
K

µK(dy)

κ3|x− y|
, x ∈ K, (4.39)

where µK is the equilibrium measure on K (see [23], [20], [24]). If |x| = δ and |y| ≤ 1
2δ, then

||x − y|−1 − |x|−1| ≤ 2δ−2|y|. Hence (4.39) yields the estimate |Px(σK < ∞) − (κ3δ)
−1cap (K)| ≤

2κ−1
3 δ−2η̃(t)cap (K), provided K ⊂ Bη̃(t)(0). In that case cap (K) ≤ cap (Bη̃(t)(0)) = κ3η̃(t), and the

claim in (4.38) follows. Furthermore, since Pa(σBδ(0) <∞) = κ3(4δ) for all a ∈ B1/4(0), we have

0 ≤ Px
(
σβ̃[0,s] <∞

)
− inf
y∈∂Bδ(0)

p
(
x, y; β̃[0, s]

)
≤ κ3(4δ) sup

y,z∈∂Bδ(0)

p
(
y, z; β̃[0, s]

)
∀x ∈ ∂Bδ(0).

(4.40)
Hence (4.38) implies (4.37).

5. Recalling (4.32), we have

1{β̃[0,s]∩β[0,σ0]=∅}

Nδ(t)+1∏
k=1

1{β̃[0,s]∩βk=∅} ≤ 1{β̃[0,s]∩β[0,t]=∅} ≤
Nδ(t)∏
k=1

1{β̃[0,s]∩βk=∅}. (4.41)

In terms of the probability defined in (4.35), and with the help of the large deviation estimate in (4.34),
this sandwich gives us, on the event Et,

E

(∫ η(t)

0

ds 1{β̃[0,s]∩β[0,t]=∅}

)
= O

(
η(t) e−Cδ(δ

′)t
)

+[1+ot(1)] Π
(

[1+ot(1)](eδ+e
′
δ)
−1t; β̃[0, s]

)
, (4.42)
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where the error terms ot(1) tend to zero as t→∞ (here we use that limt→∞ P(Bη̃(t)(0)∩β[0, σ0]) = 1).

6. Combining the estimates in Steps 1–5, and using that cap (β̃[0, s]) equals cap (β̃[0, 1])
√
s in distri-

bution under P̃0, we get

♠(t) = o(t−2) + [1 + ot(1)] Ẽ0

(∫ η(t)

0

ds e−Aδ(t)
√
s

)

= o(t−2) + [1 + ot(1)] Ẽ0

(
2

Aδ(t)2

{
1 + e−Aδ(t)

√
η(t) [Aδ(t)

√
η(t)− 1]

}) (4.43)

with
t−1Aδ(t) = [1 +O(δ)] [1 + ot(1)] (eδ + e′δ)

−1 (κ3δ)
−1cap (β̃[0, 1]), t→∞. (4.44)

The term between braces in (4.43) is bounded and tends to one in P̃0-probability as t→∞ because of
the first half of (4.21). Therefore (4.43)–(4.44) lead us, for fixed δ, to

lim
t→∞

t2♠(t) = lim
t→∞

t2 Ẽ0

(
2

Aδ(t)2

)
= [1 +O(δ)] 2(κ3δ)

2(eδ + e′δ)
2 Ẽ0

(
1

cap (β̃[0, 1])2

)
, (4.45)

where we use Lemma 4.1, which also implies that the expectation in the right-hand side is finite.

7. Finally, letting δ ↓ 0 and using that

lim
δ↓0

δeδ = 1/κ3, lim
δ↓0

e′δ = E0(τB1/4(0)) <∞, (4.46)

we arrive at

lim
t→∞

t2♠(t) = 2 Ẽ0

(
1

cap (β̃[0, 1])2

)
. (4.47)

This proves the claim in (1.10).

5 Torsional rigidity for m ≥ 4

The same estimates as in the proof of Theorem 1.2 for m = 3 in Section 4.3 can be used to prove
Theorem 1.3 for m ≥ 4 after we replace β̃[0, s] by W̃r(t)[0, s]. The details are explained in Sections 5.1–
5.2.

5.1 Proof of Theorem 1.3 for m ≥ 5

Proof. In the proof we assume that

lim
t→∞

t1/(m−2)r(t) = 0, lim
t→∞

t

log3 t
r(t)m−4 =∞. (5.1)

1-2. The estimates in Steps 1–2 are sharp enough to produce a negligible error term o(t−2/(m−2))
when (4.21) is replaced by

lim
t→∞

η(t) log t = 0, lim
t→∞

t r(t)m−4 η(t)

log2 t
=∞, (5.2)

where we note that by the second half of (5.1) there exists a choice of η(t) satisfying (5.2). Indeed, the
analogues of (4.22)–(4.23) give (recall that Lemma 4.2 also holds for m ≥ 4)

(Ẽ0 ⊗ E)

(∫ K(t)

η(t)

ds 1{W̃r(t)[0,s]∩β[0,t]=∅}

)
≤ K(t) Ẽ0

(
e−cmt cap (W̃r(t)[0,η(t)]∩B1/4(0))

)
, (5.3)
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where we use that cap (W̃r(t)[0, s]) ≥ cap (W̃r(t)[0, η(t)]) for s ≥ η(t). The estimate in Step 2 shows
that, because of the first half of (5.2), P0(Ect ) with Et defined in (4.30) decays faster than any negative
power of t, so that we can remove the intersection with B1/4(0) at the expense of a negligible error

term. Since t cap (W̃r(t)[0, η(t)]) equals t r(t)m−2cap (W̃1[0, η(t)/r(t)2]) in distribution under P̃0, we
obtain that

Ẽ0

(
e−cmt cap (W̃r(t)[0,η(t)])

)
= Ẽ0

(
e−cm t r(t)m−2 cap (W̃1[0,η(t)/r(t)2])

)
. (5.4)

Via an estimate similar as in (4.24) with c replaced by cη(t)/r(t)2, we obtain, with the help of Lemma 7.1
below (which is the analogue of Lemma 4.1 and is proved in Section 7.1),

Ẽ0

(
e−cm t r(t)m−2 cap (W̃1[0,η(t)/r(t)2])

)
≤ C e−2

√
cmc t r(t)m−2 η(t)/r(t)2

+ o(t−2/(m−2)). (5.5)

Hence the right-hand side of (5.3) is O(K(t)−1) when we pick

K(t) = e
√
cmc t r(t)m−2 η(t)/r(t)2

. (5.6)

The second half of (5.2) ensures that K(t) grows faster than any positive power of t, and so (5.3) is
negligible. The contribution

(Ẽ0 ⊗ E)

(∫ ∞
K(t)

ds 1{W̃r(t)[0,s]∩β[0,t]=∅}

)
(5.7)

can again be estimated in a similar way by reversing the roles of β and β̃. This leads to a term that
is even much smaller.

3-5. Step 3 is unaltered. In Step 4 the term δ−1 is to be replaced by δ−(m−2), because in (4.39) the
term 1/κ3|x− y| is to be replaced by 1/κm|x− y|m−2. Step 5 is unaltered.

6-7. In Step 6 we use that cap (W̃r(t)[0, s]) equals s(m−2)/2cap (W̃r(t)/
√
s[0, 1]) in distribution under

P̃0. This gives
♠r(t)(t) = I1(t) + o(t−2/(m−2)), (5.8)

where

I1(t) = Ẽ0

(∫ η(t)

0

ds e−Aδ(t,s) s
(m−2)/2

)
(5.9)

with
Aδ(t, s) = [1 +O(δ)] [1 + ot(1)] (eδ + e′δ)

−1 t δ−(m−2) cap (W̃r(t)/
√
s[0, 1]). (5.10)

With the change of variable u = t1/(m−2)
√
s, the integral becomes

I1(t) = t−2/(m−2)I2(t), (5.11)

where

I2(t) = Ẽ0

(
2

∫ t1/(m−2)
√
η(t)

0

duu e−A
′
δ(t,u)um−2

)
(5.12)

with (recall (1.6))

A′δ(t, u) = [1 +O(δ)] [1 + ot(1)] (eδ + e′δ)
−1 δ−(m−2) cap (W̃ε(t)/u[0, 1]), (5.13)

where ε(t) = t1/(m−2)r(t). Now, (1.22) tells us that

cap (W̃ε(t)/u[0, 1]) = [1 + o(1)]u−(m−4)cap (W̃ε(t)[0, 1]) in P0-probability as t→∞ (5.14)
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for every u ∈ (0,∞) and m ≥ 5, where we use that ε(t) = o(1) by the first half of (5.1). Therefore
with the help of (5.2) and dominated convergence, we find that

I2(t) = [1 + o(1)] Ẽ0

(
2

∫ ∞
0

duu e−A
′′
δ (t)u2

)
= [1 + o(1)] Ẽ0

(
1

A′′δ (t)

)
, t→∞, (5.15)

with
A′′δ (t) = [1 +O(δ)] [1 + ot(1)] (eδ + e′δ)

−1 δ−(m−2) cap (W̃ε(t)[0, 1]). (5.16)

In Step 7 the first line in (4.46) is replaced by the statement that limδ↓0 δ
m−2eδ = 1/κm. Combining

(5.8), (5.11) and (5.15), and letting δ ↓ 0, we get the scaling in (1.12).

5.2 Proof of Theorem 1.3 for m = 4

Proof. In the proof we assume that

lim
t→∞

t1/(m−2)r(t) = 0, lim
t→∞

t

log3 t

1

log(1/r(t))
=∞. (5.17)

1-2. The estimates in Steps 1–2 are sharp enough to produce a negligible error term o(t−2/(m−2))
when (4.21) is replaced by

lim
t→∞

η(t) log t = 0, lim
t→∞

t

log2 t

η(t)

log(η(t)/r(t)2)
=∞, (5.18)

where we note that by the second half of (5.17) there exists a choice of η(t) satisfying (5.18). The
estimate uses (4.24) with c replaced by c(η(t)/r(t)2)/ log(η(t)/r(t)2), and also Lemma 7.1 below (which
is the analogue of Lemma 4.1 and is proved in Section 7.1).

3-5. These steps are unaltered.

6-7. These steps are unaltered: (1.13)–1.14 tell us that

cap (W̃ε(t)/u[0, 1]) = [1 + o(1)] cap (W̃ε(t)[0, 1]) in P0-probability as t→∞ (5.19)

for every u ∈ (0,∞), where we use that ε(t) = t1/(m−2)r(t) = o(1) by the first half of (5.17). This is
used in (5.12)–(5.13) to get (5.15)–(5.16) with m = 4.

6 Proof of Theorem 1.4

Proof. By a direct calculation via the Fourier transform, we have that the Dirichlet heat kernel on
Tm is given by (recall the notation in Section 2.1)

pTm(x, y; s) = (4πs)−m/2
∑

λ∈(2πZ)m

e−|x−y−λ|
2/4s, (6.1)

where |x− y − λ| = d(x− y, λ). It follows that

pTm(x, x; s) = (4πs)−m/2
∑
λ∈Zm

e−π
2|λ|2/s. (6.2)

By translation invariance, pTm(x, x; s) is independent of x, and we will denote it by π(s). By the
eigenfunction expansion in (2.7) with M = Tm and Ω = B(t) = Tm\β[0, t], and by the monotonicity
of the Dirichlet heat kernel, we have for s > 0,

e−sλtϕ(x)2 ≤ pB(t)(x, x; s) ≤ π(s), (6.3)
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where we abbreviate λt = λ1(B(t)) as in (3.6). Taking the supremum over x, we obtain

‖ϕ1‖−2
L∞(B(t)) ≥ π(s)−1e−sλt . (6.4)

By Lemma 2.2(b) we have, for s > 0,

T (B(t)) ≥ λ−1
t π(s)−1e−sλt . (6.5)

Since q 7→ q−1e−sq is convex for every s > 0, Jensen gives that

♠(t) ≥ π(s)−1E0(λt)
−1e−sE0(λt). (6.6)

For s = 1 this reads
E0(λt) e

E0(λt) ≥ π(1)−1♠(t)−1. (6.7)

Since the right-hand side of (6.7) increases to infinity as t → ∞, there exists t0 < ∞ such that
E0(λt) ≥ 1 for t ≥ t0. We now put

st = E0(λt)
−1 (6.8)

and note that st ≤ 1 for t ≥ t0. By (6.2) and (6.6), we find that, for t ≥ t0,

♠(t) ≥ e−1π(st)
−1st = (4π)m/2e−1 s

(2+m)/2
t

(∑
λ∈Z

e−π
2|λ|2/st

)−m

≥ (4π)m/2e−1 s
(2+m)/2
t

(∑
λ∈Z

e−π
2|λ|2

)−2

≥ s(2+m)/2
t . (6.9)

We conclude that, for t ≥ t0,
E0(λt) ≥ ♠(t)−2/(m+2). (6.10)

7 Capacity of Wiener sausage for m ≥ 4

In Section 7.1 we derive the analogue of Lemma 4.1, showing that the inverse of C(t) for m ≥ 4 defined
in (1.13) has a finite exponential moment uniformly in t ≥ 2. In Section 7.2 we prove (1.13)–(1.14) for
m ≥ 5.

7.1 Exponential moment of the inverse capacity

Lemma 7.1 Let m ≥ 4. Then there exists a c > 0 such that

sup
t≥2

E0

(
exp

[
c

C(t)

])
<∞. (7.1)

Proof. The proof is similar to that of Lemma 4.1. For any compact set A ⊂ Rm, we use the
representation (compare with (4.2))

1

cap (A)
= inf

[∫
Rm

∫
Rm

µ(dx)µ(dy)

κm |x− y|m−2 : µ is a probability measure on A

]
. (7.2)

As test probability measure we choose the sojourn measure of W1[0, t], namely,

µW1[0,t] =
1

t

∫ t

0

νβ(s) ds with νz(dx) =
1

ωm
1B1(z)(x) dx, z ∈ Rm, (7.3)
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where ωm = |B1(0)|. Since µ has support in W1[0, t], we have

1

cap (W1[0, t])
≤ 1

κmω2
mt

2

∫ t

0

du

∫ t

0

dv

∫
B1(0)

dx

∫
B1(0)

dy
1

|β(u) + x− β(v)− y|m−2 . (7.4)

Moreover, there exists a C = C(m) > 0 such that for all u and v,∫
B1(0)

dx

∫
B1(0)

dy
1

|β(u) + x− β(v)− y|m−2 ≤
C

|β(u)− β(v)|m−2 ∨ 1
. (7.5)

7.1.1 m ≥ 5

Abbreviate c̄ = cC/κmω
2
m, and estimate

exp

[
c

C(t)

]
≤ exp

[
c̄

t

∫ t

0

du

∫ t

0

dv
1

|β(u)− β(v)|m−2 ∨ 1

]

≤ 1

t

∫ t

0

du exp

[
c̄

∫ t

0

dv
1

|β(u)− β(v)|m−2 ∨ 1

]

≤ 1

t

∫ t

0

du exp

[
c̄

∫
R
dv

1

|β(u)− β(v)|m−2 ∨ 1

]
.

(7.6)

Taking the expectation and using the translation invariance of Brownian motion, we obtain the t-
independent bound

E0

(
exp

[
c

C(t)

])
≤ E0

(
exp

[
c̄

∫
R
dv

1

|β(v)|m−2 ∨ 1

])

≤ E0

(
exp

[
2c̄

∫ ∞
0

dv
1

|β(v)|m−2 ∨ 1

])
,

(7.7)

and so it remains to show that the right-hand side is finite for c small enough. Arguing in the same
way as in the proof of Lemma 4.1, we obtain

E0

(
exp

[
2c̄

∫ ∞
0

dv
1

|β(v)|m−2 ∨ 1

])

≤
∑
k∈N0

(2c̄)k E0

(∫
0≤v1<···<vk<∞

k∏
i=1

dvi

|β(vi)|m−2 ∨ 1

)

≤
∑
k∈N0

(2c̄)k

[∫ ∞
0

dv E0

(
1

|β(v)|m−2 ∨ 1

)]k
.

(7.8)

Therefore it remains to prove the finiteness of the integral. That that end, we estimate∫ ∞
0

dv E0

(
1

|β(v)|m−2 ∨ 1

)
≤ 1 +

∫ ∞
1

dv E0

(
|β(v)|−(m−2) ∧ 1

)
≤ 1 +

∫ ∞
1

dv E0

(
|β(v)|−(m−2)

)
= 1 + E0

(
|β(1)|−(m−2)

)∫ ∞
1

dv v−(m−2)/2 <∞,

(7.9)

where the last inequality holds because m ≥ 5.
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7.1.2 m = 4

Abbreviate c̄ = cC/κ4ω
2
4 , and replace (7.6) by

exp

[
c

C(t)

]
≤ 1

t

∫ t

0

du exp

[
c̄

log t

∫ u+t

u−t
dv

1

|β(u)− β(v)|2 ∨ 1

]
(7.10)

and (7.7) by

E0

(
exp

[
c

C(t)

])
≤ E0

(
exp

[
2c̄

log t

∫ t

0

dv
1

|β(v)|2 ∨ 1

])
(7.11)

and (7.8) by

E0

(
exp

[
2c̄

log t

∫ t

0

dv
1

|β(v)|2 ∨ 1

])
≤
∑
k∈N0

(
2c̄

log t

)k [∫ t

0

dv E0

(
1

|β(v)|2 ∨ 1

)]k
(7.12)

and (7.9) by ∫ t

0

dv E0

(
1

|β(v)|2 ∨ 1

)
= 1 + E0

(
|β(1)|−2

)∫ t

1

dv v−1 ≤ c′ log t, (7.13)

for some c′ ∈ (0,∞).

7.2 Scaling of the capacity

The proof for m ≥ 5 uses subadditivity. The proof for m = 4 is much more complicated and is
addressed in a future paper.

Note that capacity is subadditive: cap (W1[0, s + t]) ≤ cap (W1[0, s]) + cap (W1[s, s + t]) for all
s, t ≥ 0. Hence, Kingman’s subadditive ergodic theorem yields that

lim
t→∞

t−1cap (W1[0, t]) = c̄m β − a.s. (7.14)

for some c̄m ≥ 0. We therefore get the claim with cm = c̄m, provided we show that c̄m > 0.

In view of (7.2), we can get a lower bound on capacity by choosing a test probability measure. We
again choose the sojourn measure of W1[0, t] in (7.3). This gives

t

cap (W1[0, t])
≤ t
∫
Rm

∫
Rm

µW1[0,t](dx)µW1[0,t](dy)

κm|x− y|m−2
=

1

t

∫ t

0

du

∫ t

0

dv

∫
Rm

∫
Rm

νβ(u)(dx)νβ(v)(dy)

κm|x− y|m−2
.

(7.15)
Now, there exists a C <∞ such that∫

Rm

∫
Rm

νa(dx)νb(dy)

κm|x− y|m−2
≤ C

|a− b|m−2 ∨ 1
∀ a, b ∈ Rm. (7.16)

Hence
t

cap (W1[0, t])
≤ 1

t

∫ t

0

du

∫ t

0

dv
C

|β(u)− β(v)|m−2 ∨ 1
. (7.17)

To prove that c̄m > 0 it suffices to show that the right-hand side has a finite expectation. To that end,
we estimate

1

t

∫ t

0

du

∫ t

0

dv E0

(
1

|β(u)− β(v)|m−2 ∨ 1

)
≤ 2

∫ t

0

dv E0

(
1

|β(v)|m−2 ∨ 1

)
(7.18)

and note that, as shown in (7.9), the integral converges as t→∞ when m ≥ 5.
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