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Abstract
The organizers of the 4th Parameterized Algorithms and Computational Experiments challenge
(PACE 2019) report on the 4th iteration of the PACE challenge. This year, the first track featured
the MinVertexCover problem, which asks given an undirected graph G = (V, E) to output a
set S ⊆ V of vertices such that for every edge vw ∈ E at least one endpoint belongs to S. The exact
decision version of this problem is one of the most discussed problem if not even the prototypical
problem in parameterized complexity theory. Another two tracks were dedicated to computing the
hypertree width of a given hypergraph, which is a certain generalization of tree decompositions to
hypergraphs that has widely been applied to problems in databases, constraint programming, and
artificial intelligence. On one track we asked for submissions that compute hypertree decompositions
of minimum width (MinHypertreeWidth) and on the other track we asked to heuristically
compute hypertree decompositions of small width quickly (HeurHypertreeWidth). We received
28 implementations from 26 teams. This year we asked participants to submit solver descriptions in
order to count as a submission for the challenge. We received those from 16 teams with overall 33
participants from 10 countries. One team submitted successful solutions to all three tracks.
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Dresden, who gave us access to the HRSK-II and 80.000 CPU hours from February on to select
instances and validate the results [3].

1 Introduction

The Parameterized Algorithms and Computational Experiments Challenge (PACE) was
conceived in Fall 2015 to deepen the relationship between parameterized algorithms and
practice. It aims to:
1. Bridge the divide between the theory of algorithm design and analysis, and the practice

of algorithm engineering.
2. Inspire new theoretical developments.
3. Investigate in how far theoretical algorithms from parameterized complexity and related

fields are competitive in practice.
4. Produce universally accessible libraries of implementations and repositories of benchmark

instances.
5. Encourage the dissemination of these findings in scientific papers.

The first iteration of PACE was held at IPEC 2016 [40]. There programmers were asked
for submissions on two tracks, namely, (a) a treewidth track allowing for exact sequential,
exact parallel, heuristic sequential, and heuristic parallel submissions and (b) a feedback
vertex set track. PACE 2017 [41] featured (a) a treewidth track allowing for sequential exact
or heuristic submissions and (b) a minimum fill-in track. PACE 2018 [26] then asked for
submissions that solve the Steiner tree problem. The line of past challenges has inspired a
long list of works on the proposed problems [8, 17, 20, 57, 62, 76, 81, 90, 97, 98, 107, 123,
142, 153, 143, 144, 151, 152, 99]. Benchmarks from the PACE challenges have been used for
other competitions and evaluations [47, 129, 134]. Various applications have built on top of
results from PACE or were inspired by the success of solvers produced for PACE [16, 21, 22,
30, 32, 33, 58, 59, 60, 61, 64, 65, 66, 101, 103, 105, 110, 109, 111, 122, 127, 150, 158]. Finally,
PACE challenges have been mentioned in research works [38, 115]. Among the various papers
have also been papers that received a best paper award [16, 143].

In this article, we report on the 4th iteration of PACE. The PACE 2019 challenge was
announced on November 16, 2018. Format descriptions were posted on November 20, 2018
and the public instances were released on December 5, 2019 (hypertree decompositions)
January 4, 2019 (vertex cover) and updated on March 6, 2019 (vertex cover), since the
initial instances were not challenging enough for the participants. The final version of
the submissions was due on May 6, 2019. We informed the participants of the results on
July 14. We released the private instances on July 29 [50, 56] and announced the final
results to the public on September 11, during the award ceremony at the International
Symposium on Parameterized and Exact Computation (IPEC 2019) in Munich. For the first
time in the history of PACE, we had a poster session after the award ceremony, where 4
posters were presented, namely WeGotYouCovered [92], bogdan [156], asc [139] as well as
TULongo [124, 125].

PACE 2019 consists of three tracks. The first track featured the MinVertexCover
problem, which asks given an undirected graph G = (V,E) to output a set S ⊆ V of vertices
such that for every edge vw ∈ E at least one endpoint belongs to S. The exact decision version
of this problem is one of the most discussed problem if not even the prototypical problem in
parameterized complexity theory. Another two tracks were dedicated to compute the hyper-
tree width of a given hypergraph, which is a certain generalization of tree decompositions to
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hypergraphs that has widely been applied to problems in databases [82], constraint program-
ming [35, 82, 87], and artificial intelligence [106, 108]. On one track we asked for submissions
that compute hypertree decompositions of minimum width (MinHypertreeWidth) and on
the other track we asked to heuristically compute hypertree decompositions of small width
fast (HeurHypertreeWidth). This year’s PACE had quite relaxed solver requirements and
we even allowed solvers to use external dependencies such as ILP, SAT, and SMT solvers if the
external solvers were available under an open source license. We received 28 implementations
from 26 teams. This year we asked participants to hand in solver descriptions and received
those from 16 teams. If we count only submissions that handed in a solver and a description
according to the submission requirements, we had overall 33 participants from 10 countries.
One outstanding team submitted successful solutions to all three tracks.

2 The PACE 2019 Challenge Problems

In this section, we give an overview on the PACE 2019 problems. We organized the section by
problem and present the well-known vertex cover problem first and then a generalization of
treewidth to hypergraphs. For each problem, we start with a quick definition, introduce the
tracks and selected instances. We finish with the submission requirements. In the following,
we assume that the reader is familiar with basic graph terminology and we refer to standard
texts [25, 45] otherwise.

2.1 Vertex Cover (Track 1a)

Computing minimum vertex covers was among the original 21 NP-complete problems by
Karp [104] and is probably one of the most famous graph problems. In fact, there are over
537,000 results (queried on 30.07.2019) on Google scholar, dealing with problems related to
finding vertex covers and variants thereof. Besides, vertex covers are particularly well-studied
in parameterized complexity [37], ranging from studies involving different parameters [31, 126]
and related problems [121, 137], over kernelization [52, 112], and also concern concrete
applications [28, 46, 51, 96, 131]. We use the following definition.

I Definition 1 (Vertex Cover). Given an undirected graph G = (V,E). A set S ⊆ V is a
vertex cover for G, if for every edge uv ∈ E, we have {u, v} ∩ S 6= ∅. A vertex cover S is a
minimum vertex cover for G if there is no vertex cover S′ for G such that |S′| < |S|.

This definition motivates the problem of Track 1a.

Problem: MinVertexCover (Exact)
Input: Undirected graph G
Task: Output a minimum vertex cover for G.

Data Format

The input format for providing a graph (.gr) was taken from the PACE 2017 format for
graphs [41]. The output format for specifying a vertex cover (.vc) was an adaption of the
input format in the same style. More details on the format can be found at pacechallenge.
org/2019/vc/vc_format. There is also a simple checker available at github.com/hmarkus/
vc_validate in Python (folder: vc_validate) and C++ (folder: cpp).
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Name # Reference (Download Link) Converter

1 PACE 2016/Treewidth 17 pacechallenge.org:2016
2 TransitGraphs 23 github:daajoe/transit_graphs [53]
3 Road-graphs 5 github.com:ben-strasser
4 SNAP 15 snap.stanford.edu
5 frb 41 buaa.edu.cn:kexu/benchmarks
6 ASP Horn backdoors 1,077 asparagus.cs.uni-potsdam.de [23, 24, 78, 102, 54]
7 SAT Horn backdoors 83 marco.gario.org [74, 55]

tinyurl.com:countingbenchmarks
8 SAT2VC 8,329 satlib.org [49]

tinyurl.com:countingbenchmarks
sat2018.tuwien:benchmarks

Table 1 Information on the origins of our graphs, including download links and relevant converters.

Instances for Vertex Cover
In order to establish a suitable set of benchmark instances from various areas, we considered
in total 9,591 instances comprising of the following 8 origins.
1. 17 graphs from PACE 2016/Treewidth [40];
2. 23 graphs from TransitGraphs (Denmark, FlixBus, Israel, Luxembourg, Metro Bilbao,

Mexico City, NYC Subway, Pace Bus, Praha, Translink, VBB, WienerLinien) [53];
3. 5 graphs from Road-graphs [42, 141];
4. 15 graphs from SNAP (Stanford Network Analysis Project) [117] including gnutella [120,

135], social circles from facebook [130], bitcoin OTC trust network [113, 114], and wiki
vote [118, 119],

5. 41 graphs from frb [155];
6. 1,077 graphs from ASP Horn backdoors [63], where a vertex cover of the graph gives a

Horn backdoor to the considered logic program (ASP) [27, 100], originating from various
ASP competitions [10, 29, 43, 79], in more detail, 7 SCoreDLP-Mutex [128] logic programs,
282 SCore-RLP200 logic programs [157], 200 MinimalDiagnosis [29, 77] logic programs,
and 588 automotive [140] logic programs;

7. 83 graphs from SAT Horn backdoors [138], where a vertex cover of the graph gives a
Horn backdoor to the considered SAT instance, originating from 15 dfremont projection
formulas [71] and 68 Gario formula collection [73, 75];

8. 8,329 graphs from SAT2VC, where we took widely used SAT instances, reduced them
into 3-SAT instances [133] and then reduced them to k-vertex cover by means of the
well-known reductions by Karp [104] (merge the reductions from SAT to clique and then
clique to vertex cover into one). Then, a vertex cover of k = n+ 2m exists if and only if
the given formula of n variables and m clauses is satisfiable. We took 6,956 SAT instances
from the SATlib collection [95], 1,187 instances from a popular #SAT collection [66, 71],
and 186 instances from the SAT 2018 competition [94].

We implemented a variety of converters, among those tools where the following: asp_
horn_backdoors [54], HornVCBuilder [74], lp2normal [23, 24], gringo [78, 102], a SAT to
vertex cover converter [49]. Table 1 gives an overview on the sources and the involved graph
converters or programs that implement the reductions described above.

For PACE 2019, we were interested in challenging, large instances that are still within
reach for the participants in reasonable development time, but require reasonable efforts to

https://pacechallenge.org/2016/treewidth/
https://github.com/daajoe/transit_graphs
https://github.com/ben-strasser/road-graphs-pace16
https://snap.stanford.edu/data/p2p-Gnutella09.html
http://sites.nlsde.buaa.edu.cn/~kexu/benchmarks/graph-benchmarks.htm
https://asparagus.cs.uni-potsdam.de/
https://marco.gario.org/work/master/
http://tinyurl.com/countingbenchmarks
http://www.satlib.org
http://tinyurl.com/countingbenchmarks
http://sat2018.forsyte.tuwien.ac.at/benchmarks/
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Figure 1 Overview on the number of instances and runtime intervals, which were computed by
means of a simple ILP encoding solved by the (M)ILP solver Gurobi, for the selected instances of
Track 1a. The x-axis labels the considered intervals, i.e., [a; b) indicates that runtime t was within
the interval a ≤ t < b. The y-axis indicates the number of selected instances.

score one of the medals. In order to get a naive classification of the “practical hardness”
of our collected benchmark instances, we encoded the MinVertexCover problem into
a simple ILP encoding and ran the solver Gurobi [89] on all instances with a timeout of
6 hours. After obtaining initial runtime results, we assigned to each instance a category
(easy{1, 2, 3}, medium{1, 2, 3, 4}, and hard{1, 2, 3}). From the classified instances, we picked
200 instances by sampling uniformly at random among the distribution given in Figure 1.
Mainly, we dropped an instance if the runtime was below 1s, and picked 80 instances from
category easy (runtime within the interval [1; 300)), picked 80 instances from category
medium (runtime within the interval [300;1,500), and 40 instances from category hard
(runtime in the interval [1,500;19,000)). We dropped instances that could not be solved
within 6 hours. We numbered the instances from 1 to 200 with increasing hardness, selected
the odd numbered instances as public and even numbered instances as private instances.
Table 2 shows statistics on the resulting instances. The 100 public instances were released at
pacechallenge.org/2019/vc/vc_exact. All the selected instances are publicly available at
Zenodo:3368306 [50]. We released the full collection of instances, instance selection scripts,
and mapping of selected instances at github:daajoe/pace_2019_vc_instances.

2.2 Hypertree Decompositions (Tracks 2a and 2b)
Hypertree decompositions and the resulting measure hypertree width is a prominent struc-
tural restriction in the area of constraint satisfaction problems (CSP) [11, 39, 149] and
databases [82], such as the commercial database system LogicBlox [12, 15, 6, 7, 132] that
uses hypertree decompositions. In the beginning of the 80s, Freuder [72] showed that the
CSP is tractable under structural restrictions imposed in terms of bounded treewidth of the
constraint graph. The result has later been generalized by Gottlob, Leone, and Scarcello
to hypertree width [82], which still renders CSP polynomial-time tractable. In fact, the
polynomial-time solvability for bounded hypertree width instances still holds when one is
interested in counting the number of satisfying assignments [48], which is also known as
sum-of-products, weighted counting, partition function, or probability of evidence [106].
Thus, this problem is also of high interest in artificial intelligence, e.g., to solve probabilistic
reasoning [108]. While there are even more general measures [86, 87], hypertree decomposi-
tions allow for computing a hypertree decomposition of width at most k (if one exists) in
polynomial time for a given fixed integer k. Still hypertree width was mainly of theoretical

IPEC 2019
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instances |Vmin| |Vmax| |Vavg| |Vmed| |Emin| |Emax| |Eavg| |Emed| twub
med

public 198 138.14k 16.44k 14.69k 813 227.24k 30.95k 24.66k 105.0
private 153 98.13k 16.30k 13.59k 625 161.36k 30.50k 27.15k 103.5
all 153 138.14k 16.37k 13.59k 625 227.24k 30.73k 24.66k 107.0
Table 2 Basic statistics on the selected PACE 2019 instances for Track 1a (Vertex Cover/Exact).

|Vmin| and |Emin| refers to the minimum number of vertices and edges, respectively; max refers to
the maximum; avg refers to the mean; med refers to the median; twub

med refers to a heuristically
computed upper bound (median over the instances) on the treewidth using the library htd [8].

interest due to few practical implementations and missing efficient implementations of heuris-
tics to compute the associated decompositions. The success of PACE 2016 and 2017 and its
resulting decomposers for computing tree decompositions, which facilitated lots of follow-up
implementations [32, 33, 66, 61], and the hope that PACE also drives advances to the CSP,
reasoning, and database community, motivated us to propose this problem for Track 2.

I Definition 2 (Hypergraphs and Tree Decompositions). A hypergraph is a pair H = (V,E)
consisting of a set V of vertices and a set E of hyperedges, where each hyperedge in E is
a subset of V . Let H = (V,E) be a hypergraph. A tree decomposition [136] of H is a pair
T = (T, χ) where T = (N,A) is a rooted tree and χ is a mapping that assigns to each node
t ∈ N a set χ(t) ⊆ V , called bag, such that the following conditions hold: (i) V =

⋃
t∈N χ(t),

(ii) E ⊆ {2χ(t) | t ∈ N}, and (iii) for each r, s, t ∈ A where s lies on the path from r to t, we
have χ(s) ⊆ χ(r) ∩ χ(t).

We follow the definitions of Gottlob, Leone, and Scarcello [82].

IDefinition 3 (Hypertree Decompositions [82]). Let H = (V,E) be a hypergraph and let S ⊆ V
be a set of vertices. An edge cover C ⊆ E of S is a set of hyperedges, where for every v ∈ S,
there is e ∈ C with v ∈ e. A hypertree decomposition of H is a triple H = (T, χ, λ), where
(i) (T, χ) is a tree decomposition of H with T = (N,A), (ii) λ is a mapping that assigns to
each node t ∈ N an edge cover λ(t) of χ(t), and (iii) for every t ∈ N and every e ∈ λ(t), we
have e ∩ χ≤t ⊆ χ(t). The set χ≤t refers to the set of all vertices occurring in a bag χ(t′) of
the subtree T ′ = (N ′, A′) of T where T ′ is rooted at t and t′ ∈ N ′. Then, width(H) is the
size of the largest edge cover λ(t) over all nodes t ∈ N . The hypertree width htw(H) is the
smallest width over all hypertree decompositions of H.

Based on this generalization of tree decompositions to hypergraphs, we defined the
following two problems for Track 2a and 2b.

Problem: MinHypertreeWidth (Exact)
Input: Hypergraph H
Task: Output a hypertree decomposition of H of minimum width.

Problem: HeurHypertreeWidth (Heuristic)
Input: Hypergraph H
Task: Output a hypertree decomposition of H of small width.

Computation of Hypertree Decompositions
Above we mentioned that there are a variety of applications for hypertree decompositions.
However, many practical sides are not very well explored. In fact, for tree decompositions
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Track instances |Vmin| |Vmax| |Vmed| |Emin| |Emax| |Emed|

Track 2a (Exact) public 3 130 24.0 3 100 61.5
Track 2a (Exact) private 10 351 25.0 5 250 60.0
Track 2a (Exact) all 3 351 24.0 3 250 60.0

Track 2b (Heuristic) public 12 694 40.0 5 526 84.0
Track 2b (Heuristic) private 12 694 40.0 5 495 90.0
Track 2b (Heuristic) all 12 694 40.0 5 526 84.0

Table 3 Basic statistics on the selected PACE 2019 instances for Track 2a (MinHypertreeWidth)
and Track 2b (HeurHypertreeWidth). |Vmin| and |Emin| refers to the minimum number of vertices
and hyperedges, respectively; max refers to the maximum; med refers to the median.

both exact as well as heuristic-based decomposers are widely available due to recent PACE
challenges, this is not the case for hypertree decompositions. There, only very few implemen-
tations are available and the exact implementations are highly prototypical. Fortunately,
various theoretical results on computing hypertree decompositions [82, 83, 70, 69, 68] and
more general measures [57] are available. Some of these approaches are simply combinatorial
backtracking based algorithms, others are heuristics based on bucket elimination, and again
others are based on encodings into extensions of SAT. A major obstacle for hypertree decom-
positions is that Condition (iii) of Definition 3 is expensive and in case of encodings into
SAT-related formalisms it blows up the size computation considerably.

Data Format
We designed the input and output format by extending the PACE 2016 formats used for
graphs and tree decompositions [40, 41], which are similar to the format used by DIMACS
challenges [4]. The input format for hypergraphs (.hgr) extends the PACE 2016/2017 graph
format to edges of arbitrary arity. The output format for hypertree decompositions (.htd)
allows in addition to the treewidth format to specify a covering function, i.e., mappings
for the bags that map hyperedges to 0 or 1. More details on the format can be found
at https://pacechallenge.org/2019/htd/htd_format/. We provided a simple checker at
https://github.com/daajoe/htd_validate in Python (folder: htd_validate) and C++
(folder: cpp). Both tools already implement reading and outputting the formats.

Instances for Hypertree Decompositions
For our benchmark selection, we considered 2,191 instances, which contain hypergraphs
that originate from CSP instances and conjunctive database queries from various sources.
All of these instances are part of the hyperbench collection and have been collected and
published by Fischl et al. [68, 69] together with different hypergraph properties including
various notions of width related measures2. The selection consists of eight non-disjoint sets.
15 instances from the set DaimlerChrysler, 12 instances from the set Grid2D, 24 instances
on circuits from the set ISCAS’89 [85]. 31 instances from MaxSAT [19]. 1090 instances and
863 instances, respectively on csp_application and csp_random of instances from the well

2 The hypergraphs together with the properties have been published at http://hyperbench.dbai.tuwien.
ac.at and the collection of hypergraphs is also available in a public data repository [57].
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known XCSP benchmarks [14]. 82 instances from the set csp_other, which have been
collected for works on hypertree decompositions3. 156 instances from the set CQ on various
conjunctive queries [13, 18, 80, 88, 116, 145].

In order to obtain a basic classification of the instances we heuristically computed hypertree
decompositions with htdecomp [44] and computed generalized hypertree decompositions of
smallest width [57]. Generalized hypertree decompositions relax Condition (iii) in Definition 3
and allow certain techniques to find a solution faster. The widths of the thereby obtained
decompositions are indeed of minimum width, which is guaranteed by comparing the widths
with the matching integer lower bounds obtained by fraSMT [57] – a tool for computing
fractional hypertree decompositions, which are more general than hypertree decompositions.
After obtaining initial runtime results we assigned to each instance one category out of easy,
medium, hard, or dropped the instance. An instance was classified as easy if it could be
solved within 60s, as medium if it could be solved within 300 and 900s, and hard if it could
not be solved within 7,200s. We dropped instances that could not be solved within 7,200s on
purpose, since we were interested in many realistic instances and quite challenging instances
for the solvers. From the remaining and classified instances we picked 200 by sampling 20
instances uniform at random from category easy, 60 instances from the category medium,
and 120 instances from the category hard. Table 3 shows statistics on the resulting selected
instances. We released the public instances at https://pacechallenge.org/2019/htd/htd_
exact/ and https://pacechallenge.org/2019/htd/htd_heur/, respectively. The pages
also contain a document that contains the mapping of the selected PACE 2019 instances
and the original instance of hyperbench. We also published the instances in a public data
repository [56].

3 Challenge Settings

In the following, we state the submission requirements for this year’s PACE and basic
information on the system on which we ran the challenge.

Submission Requirements

We invited people to participate in the three proposed tracks. In order to have common
setting we however posted the following submission requirements.
1. Both submitted solver and external dependencies have to be open source.
2. The source code of the solver is maintained by the submitters on a public repository.
3. A dedicated solver description of at least two pages has to be submitted.

We choose Requirement 1 fairly permissive, in order to obtain valuable information on the
actual efficiency of solving the problem. So we did not prescribe the algorithmic paradigm
that had to be used. In that way, we also allowed in principle submissions that relied on an
encoding into paradigms such as SAT or SMT. We imposed Requirement 3 to enable other
researchers to analyze and compare implemented ideas, get insights into correctness of the
other solvers, provide theoreticians with basics ideas on the latest implementations and in
the hope to improve on the reproducibility of the submitted solver.

In addition, we imposed another main rule for the exact tracks.
E. We expected submissions to be based on a provably optimal algorithm.

3 www.dbai.tuwien.ac.at/proj/hypertree/benchmarks.zip

https://pacechallenge.org/2019/htd/htd_exact/
https://pacechallenge.org/2019/htd/htd_exact/
https://pacechallenge.org/2019/htd/htd_heur/
https://www.dbai.tuwien.ac.at/proj/hypertree/benchmarks.zip
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Region Country Teams Participants Tracks

Europe Austria 3 3 1a, 2a, 2b
Germany 4 7 1a
Hungary 1 2 1a
Norway 2 6 1a
Poland 2 4 1a
Russia 1 1 1a
Scotland 1 2 1a, 2a, 2b

Middle East Lebanon 1 2 1a
North America USA 1 1 1a
South Asia India 2 5 1a

10 18 33
1

2

3

4

5

6

7

Figure 2 Participation per country based on the easychair registration and submission of both a
solver and a description. Details are given by country, tracks, and team (left) and illustrated on the
world map (right). Note that more teams and participants uploaded their code on optil.io

While we did not formally check Requirement E, we picked only instances from which we
knew the size of a minimum vertex cover or the hypertree width, respectively and checked
whether the output was both correct and according to our expected size. If a submission
halted on some instance within the allotted time, but produced a solution that was known
to be non-optimal, the submission was disqualified.

Limits

Since our evaluation resources were limited and we were interested in the solving behavior
on a larger number of instance while allowing the participants to have a “training” phase on
public instances, we restricted the runtime to 1,800 seconds and the available main memory
to 8GB per instance. Note that in general, a solver is considered to be better than an
other solver, if it solves more instances faster than the other solver. For more details about
evaluation (criteria), we refer to Section 4.3.

Hardware

Our results were gathered on the cloud evaluation platform optil.io [154] running libc 5.4.0.
optil.io evaluates submissions on Intel Xeon CPU E5-2695 v3, which consist of 14 cores
running at 2.30GHz. Each submission had access to one core. Since the submissions ran
in docker containers and the CPU has only 4 memory channels [2] we repeated the final
evaluation 3 times and took the average.

4 Participants and Results

This year, we had 18 teams and 33 participants coming from 10 countries and four regions:
Austria, Germany, Hungary, India, Lebanon, Norway, Poland, Russia, Scotland, and USA.
Figure 2 provides an overview. The number of teams and participants were little less than
half compared to PACE 2018 and at a similar number to PACE 2017. To be precise, the
2019 numbers above correspond to teams and participants who sent a final implementation
and a solver description in time whereas in previous challenges registrations were carried out
prior to optil.io registration. If we also count people who uploaded some code on the optil.io
platform but dropped out of the challenge, the number of teams is 28, which is however also
a much smaller number than in the 2018 iteration.

IPEC 2019
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Figure 3 Runtime illustrated as cactus plot for Track 1a (Vertex Cover/Exact). The x-axis
labels consecutive integers that identify instances. The y-axis depicts the runtime. The instances
are ordered by running time, individually for each solver.

4.1 Track 1a (Vertex Cover/Exact)
Figure 3 illustrates runtime results for all submitted solvers as cactus plot. Table 4 gives
a detailed overview on the standings and solvers. We allowed each solver 30 minutes per
instance and measured the number of solved instances. If two solvers solved the same number
of instances we would in addition also take into account the runtime needed to solve those
instances.

Winning Team. Demian Hespe and Sebastian Lamm (both: Karlsruhe University of
Technology, Germany), Christian Schulz (University of Vienna, Austria), and Darren Strash
(Hamilton College, USA) won Track 1a by solving 87 private instances in overall 1.3 hours
and 52.7 seconds solving time on average. Their implementation (WeGotYouCovered) [92, 93]
builds on a portfolio of techniques, which include an aggressive kernelization strategy with
all known reduction rules, local search, branch-and-reduce, and a state-of-the-art branch-and-
bound solver. Surprisingly, they also use several techniques that were not from the literature
on the vertex over problem, but originally published to solve the (complementary) maximum
independent set and maximum clique problems.

Runner-up. Patrick Prosser and James Trimble from the University of Glasgow, Scot-
land, scored second with their solver Peaty by solving 77 private instances. In fact, the results
looked much closer on the public instances [148]. Interestingly, they also used intensive
kernelization, local search, improved branch-and-bound, and a branch-and-bound maximum
clique solver, and in addition an exact graph colouring algorithm which can quickly prove
the optimality of a solution for some graphs.

Third Place. Sándor Szabó (University of Pecs, Hungary) and Bogdán Zaválnij (Hun-
garian Academy of Sciences, Hungary) accomplished a safe third place, which was in fact very
close to the team that obtained the second place on the private instances. However, on the
public instances they solved 9 less than the authors of Peaty. The authors used kernelization
and a maximum clique solver by taking the complement graph. The maximum clique solver
is based on progressive k-clique search by starting from a heuristically computed maximum
clique and increasing until no clique of size k is found.
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POS Solver # #all TLE RTE tsum[h] tavg[s] Source Reference

1 WeGotYouCovered 87 169 13 0 1.3 52.7 H:sebalamm/pace-2019 [92, 93]
2 Peaty 77 157 23 0 0.4 20.6 H:jamestrimble/peaty [148]
3 bogdan 76 147 24 0 4.5 215.2 H:zbogdan/pace-2019 [156]
4 ksimonov 34 73 64 2 1.0 102.1 L:seemann9/pace-2019-vc [36]
5 opm 33 75 67 0 0.4 47.8 Z:3236867#.XW_J9S2B3x8 [67]
6 sfs 33 74 65 2 0.8 87.0 L:cg_pace2019/vertex_cover [34]
7 vasily_alferov 32 70 68 0 0.2 23.2 H:vasalf/cheburashka [9]
8 hub 23 54 68 9 0.5 79.5 H:hubhegnel/pace-2019 [91]

DSQ Vertex_Cover_Solver 31 69 68 0 0.4 52.1 H:karamkontar99/Vertex-Cover-Solver

Table 4 Detailed standings of the submitted solvers that solved at least 15 instances for
Track 1a (Vertex Cover/Exact). POS refers to the position of the solver where DSQ refers
to a disqualification due to a produced wrong answer. # refers to the number of solved private
instances and #all refers to the number of all instances. TLE refers to the number of instances were
the runtime limit was exceeded. RTE contains the number of instances on which we observed a
runtime error. Note that if the three sums do not add to 100 we observed a memory overflow on the
remaining ones. tsum[h] states the cumulative runtime over all all solved instances in hours, tavg[s]
contains the average runtime over all solved instances in seconds. In column source, the character H
abbreviates github, character L abbreviates gitlab, and Z refers to Zenodo.

4.2 Track 2a (Hypertree Width/Exact)

Table 5a summarizes runtime results for all submitted solvers. We allowed each solver 30
minutes per instance and measured the number of solved instances. Much to our regret we
received only 3 submissions. We guess that hypertree width is just yet not very popular in
the parameterized complexity community.

Winning Team. André Schidler and Stefan Szeider from TU Wien, Austria, won this
year’s Track 2a by solving 69 private instances in overall 1.4 hours at an average of 69.4
seconds when considering the solved instances. Their implementation (asc) [139] uses an
incremental SMT-solving approach. There a first-order logic solver (handling arithmetic
constraints) interacts with a SAT solver. Hypertree width and a more general parameter
(generalized hypertree width) share Conditions (i) and (ii) from Definition 3. The additional
Condition (iii) which is present for hypertree width (special condition), however, blows up
the encoding size with a cubic number of clauses resulting in extremely large encodings for
generalized hypertree decompositions and very long encoding times. For that reason, the
authors implement a two-phase approach. They first use an encoding to obtain a generalized
hypertree decomposition and try convert it into a hypertree decomposition satisfying the
special condition without increasing the width. Only if that fails, they use the full encoding
that includes the special condition.

Runner-up. Davide Mario Longo from TU Wien, Austria, scored second with his
solver (TULongo/HdSolveE) by solving 31 private instances in 0.8 hours at an average
runtime of 95.9 seconds over the solved instances. He used a combination of algorithms to
compute lower bounds by obtaining generalized hypertree decompositions and then running
a backtracking-based algorithm to determine a hypertree decomposition. Surprisingly, he
solved much less public than private instances.

Third Place. Patrick Prosser and James Trimble from the University of Glasgow,
Scotland, received a surprising third place by solving one private instance correctly. They
made the most of the situation that we had only three submission on this track. Their solver
(heidi) implements an incomplete approach, where they heuristically compute a hypertree
decomposition and used simple rules to check whether the width is equal to two.
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POS # #all Solver tavg tsum Source (github) Ref.

1 69 144 asc 69.38s 1.32h ASchidler/frasmt_pace [139]
2 31 48 TULongo 95.96s 0.83h TULongo/pace-2019-HD-exact [124]
3 1 6 heidi 0.14s 0.00h jamestrimble/heidi [146]

(a) Track 2a (Hypertree Width/Exact).

POS Score Solver # PAR1 ∆w Source (github) Ref.

– na htdecomp 100 na na
1 5.0 hypebeast 100 0.1h 501 jamestrimble/hypebeast [147]
2 14.1 TULongo 98 2.3h 20 TULongo/pace-2019-HD-Heuristic [125]
3 128.9 asc 30 27.5 11 ASchidler/frasmt_pace [139]

(b) Track 2b (Hypertree Width/Heuristic).

Table 5 Detailed overview on the results of the Hypertree Width tracks. # refers to the number
of solved private instances. #all comprises the number of solved public and private instances. tavg

and tsum refer to average and cumulated runtime of solved private instances, respectively. PAR1
refers to the runtime where all unsolved instances are accounted by 1,800 seonds. ∆w refers to the
sum of the width difference to the resulted output by the judge, i.e., the sum over wsolver − wjudge

for each instance I.

4.3 Track 2b (Hypertree Width/Heuristic)

Table 5b summarizes runtime results for all submitted solvers. As for Track 2a, we received
only 3 submissions, while we were hoping to attract more researchers from the community
to this topic. We allowed each solver 30 minutes wall clock time per instance, while
ensuring that not more than one core was used. Our aim for the track was to have
more decomposers available to foster algorithms that employ decompositions for constraint
programming and database applications in the near future. In the past, we observed at
multiple occasions that heuristics are often only well applicable if there is a fairly good
balance between running time of the computation of the decomposer and width of the
decomposition [32, 33, 59, 61, 66]. Improving the width by one pays off if the improvement
runs fast and the width is fairly large, however, on instances with small width there is
no practical point in spending additional runtime to improve while it might even exceed
the running time of the later algorithm that exploits the decomposition. In consequence,
we decided to favor submissions that produce a result fairly quickly while still penalizing
decompositions that are far from the virtual best results. Since the widths are fairly small,
we decided for a very simple score (avoiding exponentially increasing penalties) and compute
it per instance I by (50, 000 + t + 50 · (wsolver − wjudge))/1, 000, 000 where t refers to the
wall clock and wsolver refers to the resulting width of the considered solver for I and wjudge
consists of the width htdecomp [44, 84] produced for I, which we used as judge. The way we
selected the score also depended on the situation that the runtime environment optil.io has
certain technical restrictions in case of unknown optimal results.

Winning Team. Patrick Prosser and James Trimble from the University of Glasgow,
Scotland, obtained the first place by obtaining a score of 5.0 by solving 100 instances in 0.1
hours with a cumulated width of 1104 and an overall difference to the judge by 501. Their
solver (hypebeast) implements a very simple bucket elimination strategy by starting from a
single tree node containing all hyperedges and then trying to move edges to deeper tree nodes.

https://github.com/ASchidler/frasmt_pace
https://github.com/TULongo/pace-2019-HD-exact
https://github.com/jamestrimble/heidi
https://github.com/jamestrimble/hypebeast
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https://github.com/ASchidler/frasmt_pace
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Runner-up. Davide Mario Longo from TU Wien, Austria, scored second with 14.1
points by solving 98 private instances in 2.3 hours with a total width difference to the judge
of 20. His solver (TULongo/HdSolveH) used a variant of det-k-decomp that prunes the search
tree heuristically [85]. While the det-k-decomp algorithm performs well on yes instances, it is
slow on no instances. So, Longo decided not to perform a complete search, but to prune the
search space by looking only at certain separators. The results were very close to the winning
team and only the running time cost him the first position. It is notable that, however, the
width is much closer to the result by the judge. More precisely, TULongo outputted better
results on 86 instances.

Third Place. André Schidler and Stefan Szeider from TU Wien, Austria, obtained the
third position at a score of 128.9 by solving 30 instances using the same technique as above.

5 PACE organization

The composition of the steering committee and program committee during PACE 2019 was
as follows.

Édouard Bonnet LIP, ENS de Lyon
Holger Dell IT University of Copenhagen
Bart M. P. Jansen (chair) Eindhoven University of Technology

Steering committee: Thore Husfeldt IT Univ. of Copenhagen & Lund Univ.
Petteri Kaski Aalto University
Christian Komusiewicz Philipps-Universität Marburg
Frances A. Rosamond University of Bergen
Florian Sikora LAMSADE, Université Paris Dauphine

Program Committee Johannes Fichte TU Dresden
(Tracks 1a, 2a, 2b): Markus Hecher TU Vienna & University of Potsdam

The Program Committee of PACE 2020 be chaired by Łukasz Kowalik (Univ. of Warsaw).

6 Conclusion and Future Editions of PACE

We thank all the participants for their enthusiasm, strong and interesting contributions.
Special thanks go to the participants who also presented at IPEC 2019. We are very happy
that this edition attracted many people and that also people from the SAT community showed
interest in the latest standings on the vertex cover solvers. While we were hoping to attract
more people to the hypertree width measure, which is related to constraint programming
and to the database community. We are still happy about strong contributions and hope
that this will continue for future editions by considering popular problems to the community
or even by repeating previously posted problems.

This year we changed the requirements for submissions by allowing external libraries,
but enforcing that these are open source. Further, we asked participants to provide a solver
description and to place the source code on a public data library, which is hosted long-term
by a public body, e.g., Zenodo. In line with this, we provided the complete pool of instances
from which we selected instances, the instance selection process including references to the
original source, as well as the evaluation in a public data library.

We welcome anyone who is interested to add their name to the mailing list on the PACE
website to receive updates and join the discussion. We look forward to the next edition.
Detailed information will be posted on the website at pacechallenge.org.

IPEC 2019
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