Programme of the 14th NETWORKS Training Week

24 - 28 October 2022, Asperen

Monday, 24 October 2022

	Regular programme, room Leerdam
$10: 00-12: 00$	Meeting of the MT NETWORKS
$12: 00-13: 30$	Arrival and lunch
$13: 30-14: 30$	Minicourse Johannes 1
$14: 30-15.00$	Break
$15.00-16.15$	Introtalks / research talks new members $-\quad$ Shreehari Bodas (UvA, PhD, intro 5-10 minutes) $-\quad$ Sten Wessel (TU/e, PhD, intro 5-10 minutes) $-\quad$ Benoit Corsini (TU/e, PD, research 30 minutes) $-\quad$ Alexander van Werde (TU/e, PhD, research 30 minutes)
$16.15-16.45$	Break
$16.45-17.45$	Research presentations $-\quad$Rounak Ray (TU/e, PhD) $-\quad$ Manish Pandey (TU/e, PhD) 18.00
$19.30-20.30$	Dinner

Research presentations

Benoit: Local weighted optimizations
Alexander: Clusters within Markov chains: detection, evaluation, and spectral fingerprints
Rounak: t.b.a
Manish: t.b.a.

Tuesday, 25 October 2022

	Regular programme, room Leerdam	Parallel programme
$07: 30-09: 00$	Breakfast	
09:00-10:00	Minicourse Johannes 2	
$10: 00-10: 30$	Break	
$10: 30-12: 00$	Research presentations - Francisco Escudero (CWI) - Roel Lambers (TU/e) - Gianluca Kosmella (TU/e)	
12:00-13:30	Lunch	Analytic Story telling group 1
$13: 30-14: 30$	Minicourse Johannes 3	

14:30-15:00	Break	(start at 13.00!)
15:00-16:00	Research presentations - Martin Frohn (TU/e) - Wiktor Zuba (CWI)	- Rounak Ray - Elene Anton - Haodong Zhu
16:00-16:30	Break	- Andres Lopez Martinez
16:30-18:00	- Research session: work in small groups - Meeting of the workshop committee with postdocs and staff members	- Manish Pandey - Leonidas Theocharous
18.30	Dinner	

Research presentations

Francisco: Grothendieck inequalities characterize converses to the polynomial method
Roel: t.b.a.
Gianluca: Designing Noise-Resistant Optical Neural Networks
Martin: t.b.a.
Wiktor: Algorithms on strings and labelled graphs

Wednesday, 26 October 2022

	Regular programme, room Leerdam
$07: 30-09: 00$	Breakfast
$09: 00-10: 00$	Minicourse Johannes 4
$10: 00-10: 30$	Break
$10: 30-12: 00$	Research presentations - - - Fandan Malhotra (UL) - - Frank den Hollander (UL)
$12: 00-13: 30$	Lunch
$13: 30-14: 30$	Minicourse Guus 1
$14: 30-15: 00$	Break
$15: 00-16: 00$	Research presentations - - Nikki Levering (UvA) Tom Pijnappel (TU/e)
$16: 00-18: 00$	Social event + dinner

Research presentations

Nandan: t.b.a.
Federico: t.b.a.

Frank: t.b.a.
Nikki: The externalities in an M/G/1 queue with LCFS-PR service discipline
Tom: Online Positioning of a Drone-Mounted Base Station in Emergency Scenarios.

Thursday, 27 October 2022
 NOTE: the midterm review of COFUND - PhD will take place!

	Regular programme, room Leerdam	Parallel programme
07:30-09:00	Breakfast	
09:00-10:00	Minicourse Guus 2	COFUND Management session: - Mark de Berg - Michel Mandjes - Marieke Kranenburg - Frits Spieksma
10:00-10:30	Break	
10:30-12:00	Research presentations - Davi Castro Silva (CWI) - Philip Verduyn Lunel (CWI) - Noela Müller (TU/e)	Cofund PhD students
12:00-13:00	Lunch	Lunch MT and EU project coordinator
13:00-14:00	Minicourse Guus 3	
14.00-14.30	Research presentation: - Roshan Mahes (UvA)	Analytic Story telling groep 2 - Wessel Blomerus
14.30-15.00	Break	- Francisco Escudero - Noela Muller
15:00-18:00	Research session: work in small groups	- Marta Milewska - Rowel Gündlach - Martin Frohn

Research presentations

Davi: Noisy decoding by shallow circuits
Philip: Quantum entanglement, edge-transitive graphs and semidefinite optimization
Noela: t.b.a.
Roshan: Dynamic and Adaptive Appointment Scheduling

Friday, 28 October 2022

	Regular programme, room Leerdam
$07: 30-09: 00$	Breakfast
$09: 00-10: 00$	Minicourse Guus 4
$10: 00-10: 30$	Break

University of Amsterdam Telephone: 020-525 6694
Faculty of Science
Korteweg-de Vries Institute
www.thenetworkcenter.n
1090 GE Amsterdam email: info@thenetworkcenter.nl

$10: 30-12: 00$	Research presentations - - Michelle Sweering (CWI) - Purva Joshi (TU/e)
$12: 00-13: 30$	Lunch

Research presentations

Michelle: t.b.a.
Purva: t.b.a.
Frits: How to design a serial knockout competition

Minicourses

Johannes Schmidt-Hieber

Statistical theory for neural networks

Lecture 1) Survey on neural network structures and deep learning
There are many different types of neural networks that differ in complexity and the data types that can be processed. This lecture provides an overview and surveys the algorithms used to fit deep networks to data. We discuss different ideas that underly the existing approaches for a mathematical theory of deep networks. Special focus will be on initialisation of neural networks. To train a neural network a (random) starting point has to be chosen and the success of deep learning heavily depends on a proper initialisation scheme. Standard approaches initialise a network by drawing the parameters independently from a distribution. We discuss some known properties of such randomly initialised networks and describe the edge of chaos phenomenon.

Lecture 2) Theory for shallow networks
We start with the universal approximation theorem and discuss several proof strategies that provide some insights into functions that can be easily approximated by shallow networks. Based on this, a survey on approximation rates for shallow networks is given. It is shown how this leads to estimation rates. In the lecture, we also discuss methods that fit shallow networks to data.

Lecture 3) Statistical theory for deep networks
Why are deep networks better than shallow networks? We provide a survey of the existing ideas in the literature. In particular, we study localisation of deep networks and specific functions that can be easily approximated by deep networks. We outline the theory underlying the recent bounds on the estimation risk of deep ReLU networks. In the lecture, we discuss specific properties of the ReLU activation function. Based on this, we show how risk bounds can be obtained for sparsely connected ReLU networks. At the end, we describe important future steps needed for the future development of the mathematical theory of deep learning.

Lecture 4) Tutorial

The participants should try whether they can run the provided source code prior to the tutorial. We recommend to install Anaconda and use spyder. Additional packages have then to be installed via Anaconda. Most notably Keras/tensorflow does not work with all version of pythons and it can be a bit tricky to install it. During the tutorial, we will also ask the participants to work a bit on their own with this program along some questions that we prepare.

Guus Regts

Partition functions: complex zeros and efficient algorithms

Partition functions originate in statistical physics, but also arise in several other areas. For example, the partition function of the hard core model is known as the independence polynomial in graph theory.

In this lecture series I will discuss how the absence/presence of complex zeros of partition functions is related to the computational complexity of approximately computing evaluations of these partition functions.

