
LECTURE NOTES ON APPLICATIONS OF
GROTHENDIECK’S INEQUALITY

THE INEQUALITY

JOP BRIËT

Abstract. In this lecture we cover Grothendieck’s inequality via
an extremely elegant proof of Krivine. In addition, we cover a use-
ful lemma of Grothendieck’s that yields a ”factorization” version
of the inequality.

1. Grothendieck’s inequality

Let 〈·, ·〉 be the standard inner product on Rd. Denote the set of unit
vectors in Rd by Sd−1 = {x ∈ Rd : 〈x, x〉 = 1}. Grothendieck’s
inequality can be given in terms of the following two quantities of a
matrix A ∈ Rn×n:

‖A‖∞→1 = max
{ n∑

i,j=1

Aijaibj : a, b ∈ {−1, 1}n
}

‖A‖G = sup
{ n∑

i,j=1

Aij〈xi, yj〉 : d ∈ N, xi, yj ∈ Sd−1
}
.

The notation suggests that these quantities are norms and it turns out
that they are, but we shall not use this fact here.

Theorem 1.1 (Grothendieck’s inequality). There exists an absolute
constant KG ∈ (1, 2) such that the following holds. For any positive
integer n and matrix A ∈ Rn×n, we have

(1) ‖A‖G ≤ KG‖A‖∞→1.

Here we give arguably the most elegant proof of this theorem, which is
due to Krivine [Kri79].
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Figure 1. Grothendieck’s identity in two dimensions.

2. Krivine’s proof of Grothendieck’s inequality

The first ingredient of the proof is the following simple lemma.

Lemma 2.1 (Grothendieck’s identity). Let x, y be n-dimensional real
unit vectors and let g = (g1, . . . , gn) ∼ N(0, In) be an n-dimensional
standard Gaussian vector. Then,

(2) E
[

sign(〈x, g〉) sign(〈y, g〉)
]

=
2

π
arcsin(〈x, y〉).

Proof sketch: If x = y or x = −y then there is nothing to prove, so
assume that x 6= y. We begin by projecting to the two-dimensional
subspace spanned by the pair x, y. The projection of g onto this
subspace is still a two-dimensional standard Gaussian. Observe that
sign(〈x, g〉) sign(〈y, g〉) is positive if and only if g lies above or below
both of the half-planes orthogonal to x and y respectively (Figure 1).
Since the direction of g is uniform on the unit circle, it follows that this
happens with probability

2

2π

(
π − arccos(〈x, y〉).

Hence, the expectation in (2) equals

1

π

(
π − arccos(〈x, y〉)− 1

π

(
arccos(〈x, y〉) = 1− 2

π
arccos(〈x, y〉),

which equals the right-hand side of (2). 2
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We will use the Taylor expansions of the sine and hyperbolic sine func-
tions, given by

sin(t) =
∞∑
k=1

αkt
k

sinh(t) =
∞∑
k=1

|αk|tk,

for some sequence of Taylor coefficients (αk)k ⊆ R. Note the fact that
the Taylor coefficients of the hyperbolic sine functions are given by the
absolute values of those of the sine function. Both of these Taylor series
converge on the interval [−1, 1].

The tensor product of vectors x ∈ Rd1 and y ∈ Rd1 is the d1d2-
dimensional vector x⊗ y ∈ Rd1d2 given by

x⊗ y = (xiyj)(i,j)∈[d1]×[d2].

For a positive integer k, denote by x⊗k the k-fold iterated tensor prod-
uct of x with itself.

Proposition 2.2. For any x, y ∈ Rd, we have 〈x⊗k, y⊗k〉 = 〈x, y〉k.

Proof of Theorem 1.1: Let

c = sinh−1(1) = ln(1 +
√

2).

Fix a positive integer d and two sets of d-dimensional unit vectors
x1, . . . , xn, y1, . . . , yn ∈ Sd−1. We show that there exist {−1, 1}-valued
random variables a1, . . . , an, b1, . . . , bn such that

E[aibj] =
2c

π
〈xi, yj〉

holds for all i, j ∈ [n]. To see why this suffices to prove the theorem,
observe that by linearity of expectation,

2c

π

n∑
i,j=1

Aij〈xi, yj〉 = E
[ n∑
i,j=1

Aijaibj

]
≤ max

ai,bj∈{−1,1}

n∑
i,j=1

Aijaibj.

This shows that KG ≤ π/(2c).
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To obtain the random signs, define two new sequences of vectors:

ui =
∞⊕
k=1

√
|αk|ck/2 x⊗ki

vj =
∞⊕
k=1

sign(αk)
√
|αk|ck/2 y⊗kj .

Using the Taylor expansions of sin and sinh and Proposition 2.2 it is
easy to verify that these are unit vectors and that

〈ui, vj〉 = sin(c〈xi, vj〉).

Observe that these are infinite-dimensional. However, since there are
only 2n of them, they span a space of dimension at most 2n, and
it follows that there exist unit vectors u′1, . . . , u

′
n, v′1, . . . , v

′
n ∈ S2n−1

such that 〈u′i, v′j〉 = 〈ui, vj〉 for all i, j ∈ [n]. Let g = (g1, . . . , g2n) be
a random vector of independent standard normal random variables.
Define

ai = sign(〈u′i, g〉) and bj = sign(〈v′j, g〉).
Then, by Lemma 2.1,

π

2
E[aibj] = arcsin(〈u′i, v′j〉)

= arcsin(sin(c〈xi, yj〉))
= c〈xi, yj〉.

This proves the theorem. 2

The Grothendieck constant KG is the smallest real number for which
Theorem 1.1 holds true. The problem of determining its exact value,
posed in [Gro53], remains open. The best lower and upper bounds
1.6769 · · · ≤ KG < 1.7822 . . . were proved by Davie and Reeds [Dav84,
Ree91], and Braverman et al. [BMMN13], resp.

3. Grothendieck factorization

For a vector x ∈ Rn, denote by Diag(x) ∈ Rn×n the matrix whose
diagonal is x and whose off-diagonals are all zero. The operator norm
of a matrix A ∈ Rn×n is defined by

‖A‖ = sup
{
|〈Ax, y〉| : x, y ∈ Sn−1}.
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Lemma 3.1 (Grothendieck). For any matrix A ∈ Rn×n, there exist
positive unit vectors u, v ∈ R>0 ∩ Sn−1 such that for any x, y ∈ Rn,

(3) |〈Ax, y〉| ≤ ‖A‖G ‖x ◦ u‖2‖y ◦ v‖2,
where ◦ denotes the entry-wise product.

Corollary 3.2. For any matrix A ∈ Rn×n, there exist positive unit
vectors u, v ∈ Rn

>0 ∩ Sn−1 such that the matrix

(4) B =
1

KG

Diag(u)−1ADiag(v)−1

satisfies ‖B‖ ≤ ‖A‖`∞→`1.

The proof of Lemma 3.1 is based on a clever application of the Hahn–
Banach separation theorem [Rud91, Theorem 3.4]. Recall that a set
K ⊆ Rd is convex if for any x, y ∈ K and λ ∈ [0, 1], we have that
λx+ (1− λy ∈ K. Moreover, K is a cone if for any x ∈ K and λ > 0,
we have that λx ∈ K.

Theorem 3.3 (Hahn–Banach separation theorem). Let C,D ⊆ Rn be
convex sets and let C be algebraically open. Then, the sets C and D
are disjoint if and only if there exists a vector λ ∈ Rn and an α ∈ R
such that 〈λ, c〉 < α for every c ∈ C and 〈λ, d〉 ≥ α for every d ∈ D.
Morever, if C and D are convex cones we may take α = 0.

Proof of Lemma 3.1: Let M = A/‖A‖G, so that ‖M‖G ≤ 1. Then, for
arbitrary vectors xi, yj, we have

(5)
n∑

i,j=1

Mij〈xi, yj〉 ≤ max
i,j∈[n]

‖xi‖‖yj‖ ≤
1

2
max
i,j∈[n]

(‖xi‖2 + ‖yj‖2),

where the second inequality is by AMGM inequality. Define the set
K ⊆ Rn×n by

K =

{(
‖xi‖2 + ‖yj‖2 − 2

n∑
k,`=1

Mk`〈xk, y`〉
)n
i,j=1

: d ∈ N, xi, yj ∈ Rd

}
.

We show that K is a convex cone. For every t ∈ R+ and matrix Q ∈ K
given by vectors xi, yj, the vectors x′i =

√
txi and y′j =

√
tyj similarly

define tQ, and so K is a cone. We now show K is a convex set. Let
Q,Q′ ∈ K be specified by xi, yj and x′i, y

′
j respectively. Then, for any

λ ∈ [0, 1], the convex combination λQ+(1−λ)Q′ also belongs to K, as

it can be specified by the vectors (
√
λxi,
√

1− λx′i), (
√
λyj,
√

1− λy′j).
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Additionally, it follows from (5) that K is disjoint from the open convex
cone Rn×n

<0 of matrices with strictly negative entries. By Theorem 3.3
(the Hahn–Banach separation theorem), we conclude that there exists
a nonzero matrix L ∈ Rn×n such that 〈L,Q〉 ≥ 0 for every Q ∈ K and
〈L,N〉 < 0 for every N ∈ Rn×n

<0 . In particular, the second inequality
implies that L ∈ Rn×n

+ . Let P = L/
∑

ij Lij, so that {Pij}ni,j=1 defines

a probability distribution over [n]2. Then, for any Q ∈ K,

0 ≤ 〈P,Q〉 =
n∑

i,j=1

Pij(‖xi‖2 + ‖yj‖2)− 2
n∑

k,`=1

Mk`〈xk, y`〉

=
n∑

i=1

σi‖xi‖2 +
n∑

j=1

µj‖yj‖2 − 2
n∑

k,`=1

Mk`〈xk, y`〉,

where σi = Pi1 + · · ·+Pin and µj = P1j + · · ·+Pnj. Observe that σi, µj

are strictly positive because Pij > 0. Rearranging the inequality above
and using bi-linearity, it follows that for every λ > 0, we have

2
n∑

k,`=1

Mk`〈xk, y`〉 = 2
n∑

k,`=1

Mk`〈λxk, λ−1y`〉

≤ λ2
n∑

i=1

σi‖xi‖22 + λ−2
n∑

j=1

µj‖yj‖22.(6)

Setting

λ =

(∑n
j=1 µj‖yj‖22∑n
i=1 σi‖xi‖22

)1/4

in Eq. (6), we find that

2
n∑

k,`=1

Mk`〈xk, y`〉 ≤
( n∑

i=1

σi‖xi‖22
)1/2( n∑

j=1

µj‖yj‖22
)1/2

.

In particular, for the case where xk, y` ∈ R, we have

xTMy ≤ ‖ diag(σ)1/2x‖2‖ diag(µ)1/2y‖2.
This implies

xT
(

Diag(σ)−1/2M Diag(µ)−1/2
)
y ≤ ‖x‖2 · ‖y‖2,

which in particular implies that ‖Diag(σ)−1/2M Diag(µ)−1/2‖ ≤ 1. The
result follows by letting ui =

√
σi, vi =

√
µi for every i ∈ [n]. 2
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4. Exercises

Exercise 4.1. Let A =
(
1 1
1 −1

)
. Show that ‖A‖G ≥

√
2‖A‖∞→1. [Hint:

For the lower bound on ‖A‖G, two-dimensional vectors suffice.]

Exercise 4.2. Let A ∈ Rn×n and u, v ∈ R>0∩Sn−1 be such that for any
x, y ∈ Rn, we have |〈Ax, y〉| ≤ ‖x ◦ y‖2‖y ◦ v‖2. Prove that ‖A‖G ≤ 1.
Conclude that equality holds in Lemma 3.1.
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