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GROTHENDIECK’S INEQUALITY

NONLOCAL GAMES

JOP BRIËT

Abstract. In this lecture we cover one of the earliest applica-
tion of Grothendieck’s inequality, which appeared in the study of
quantum entanglement. In particular, we will discuss Tsirelson’s
theorem [Tsi87] on XOR games.

1. Nonlocal games

Entanglement is arguably the most striking features of quantum me-
chanics. It is the possibility for two or more systems to be connected in
a way that manifests itself when the systems are measured locally. Pro-
vided the systems were in an entangled state, the measurement results
will be random and correlated. The correlations that entanglement can
produce are special in the sense that they cannot be obtained with a
source of randomness that is common to all the measurement results
(referred to as shared randomness in computer science and local hid-
den variables in physics). For this reason, these correlations are often
referred to as non-local.

Nonlocal games, introduced formally in [CHTW04], provide a useful
model in which one can study the effects of entanglement. A two-player
nonlocal game is defined by four finite sets A,B, S, T , a probability
distribution π : S× T → [0, 1] and a map V : A×B×S× T → {0, 1}.
The map V is usually referred to as the predicate. The game actually
involves three parties, two players, usually called Alice and Bob, and
a referee. The probability distribution and predicate are known to
everyone. Before the game begins, Alice and Bob may come together
to decide on a strategy to play the game. But after the game has begun,
they are not allowed to communicate with each other anymore. At the
start of the game, the referee picks a pair (s, t) ∈ S×T according to π,
and sends s to Alice and t to Bob. Based on their strategy, the two
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players then answer the referee with a ∈ A and b ∈ B, respectively.
The players win the game if V (a, b, s, t) = 1, and lose otherwise. The
players’ objective is of course to maximize their probability of winning,
where the probability is taken over the distribution π and the possible
randomness used in the players’ strategy.

A strategy is captured completely by the joint conditional probability
distribution p[a, b | s, t] telling us the probability that questions (s, t)
are answered with (a, b). Based on this, the winning probability is
given by ∑

(s,t)∈S×T

πst
∑

(a,b)∈A×B

V (a, b, s, t) p[a, b | s, t].

A deterministic classical strategy is one in which the players determine
in advance what answer to give to each question. That is to say that
there are mappings f : S → A and g : T → B such that the ques-
tion pair (s, t) is answered with (f(s), g(t)). In a randomized classical
strategy, the players may use private and shared randomness to decide
their answers. The classical value of a game is the maximum winning
probability under randomized classical strategies. It is not hard to see
that the classical value can always be achieved with a deterministic
strategy. In an entangled strategy the players decide what to answer
based on the outcomes of local measurements on an entangled state.

2. Entangled strategies

To define what entangled strategies are we need to describe what quan-
tum mechanics says about measurements on physical systems. In the
following we endow Cd with the usual inner product 〈x, y〉 =

∑d
i=1 xiyi.

Recall that a Hermitian matrix M ∈ Cd×d is positive semidefinite if
it has only nonnegative eigenvalues, or equivalently, if for any vector
x ∈ Cd, we have that 〈Mx, x〉 ≥ 0.

2.1. Quantummechanical systems. A first postulate is that a phys-
ical system X is represented by a complex vector space X with an inner
product, making X a Hilbert space. In our setting, we shall only deal
with finite dimensions and have X = Cd for some dimension d. The
set of possible states of X is given by the set of unit vectors in X .

2.2. Measurements. A measurement on a system X represented by
a vector space X = Cd is given by a set Γ and a collection of d × d
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positive semidefinite matrices M = {Ma : a ∈ Γ} with the property∑
a∈Γ

Ma = Id,

where Id is the identity matrix in Cd×d. The set Γ corresponds to the
possible measurement outcomes. A second postulate is that if X is in
the state ψ ∈ X and the measurementM is performed on X, then the
probability of obtaining outcome a ∈ Γ is given by 〈Maψ, ψ〉.

2.3. Composite systems. A third postulate is that if X,Y are two
physical systems, then the set of possible states of their union is given
by the unit vectors in the tensor product of their representing vector
spaces

X ⊗ Y = Span
{
x⊗ y : x ∈ X , y ∈ Y

}
.

A state of the composite system (X,Y) is said to be entangled if it is
not of the form x ⊗ y for some unit vectors x ∈ X and y ∈ Y . A
basic famous example of an entangled state is the so-called EPR pair
(e0⊗e0 +e1⊗e1)/

√
2, where e0, e1 ∈ C2 are the standard basis vectors.

2.4. Local measurements on composite systems. Consider a com-
posite system (X,Y) in some state ψ ∈ X ⊗ Y . Let A = {Aa : a ∈ Γ}
and B = {Bb : b ∈ Λ} be measurements on X,Y, respectively. A fourth
and final postulate is that if A is performed on X and B is performed
on Y, then then the probability that the measurements yield outcomes
a ∈ Γ, b ∈ Λ, respectively, is given by 〈Aa ⊗Bbψ, ψ〉.

2.5. Entangled strategies. An entangled strategy for a game, then,
corresponds to a pair of physical systems (X,Y) prepared in some
state ψ ∈ X ⊗ Y , an A-valued measurement As for each s ∈ S and
a B-valued measurement Bt for each t ∈ T . Alice will hold system X
and Bob will hold system Y. To answer the questions s ∈ S and t ∈ T ,
the players will measure their respective systems with measurements
As and Bt, respectively. The probability that they answer with (a, b)
is then given by

p(a, b | s, t) = 〈As
a ⊗Bt

bψ, ψ〉.

3. The CHSH game

There are many examples of nonlocal games for which entangled strate-
gies can beat the best classical strategy, in the sense that the entangled
value is strictly larger than the classical value. The simplest of these
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games is the CHSH game. Here A = B = S = T = Z2 and the players
win if and only if the sum of their answers equals the product of their
questions, and questions are picked uniformly at random. A perfect
classical strategy requires a solution to the system of linear equations

a0 + b0 = 0

a0 + b1 = 0

a1 + b0 = 0

a1 + b1 = 1.

Since the sum (modulo 2) of the left- and right-hand sides of these
equations are not equal, we see that the classical value is at most 3/4.
Clearly this can be attained if the players always answer 0.

Surprisingly, the entangled value of this game is cos(π/8)2 ≈ 0.85!
Instead of describing the strategy that does this, we will move on to a
celebrated result of Tsirelson’s, from which this can easily be deduced.
To this end, we place the CHSH game in a general class of nonlocal
games known as XOR games.

4. XOR games

An XOR game is given by a matrix M ∈ {−1, 1}n×n and a probability
distribution π over its coordinates [n]× [n]. In such a game, the referee
samples a matrix coordinate (s, t) according to π, sends s to Alice, t
to Bob, so S = T = [n]. The players then each answer with a sign, so
A = B = {−1, 1} and win if and only if the product of their answers
equals Mst. It is not hard to see that CHSH corresponds to the game
with game matrix

[
1 1
1 −1

]
.

Notice that random play ensures that any XOR games can trivially be
won with probability at least 1

2
. For this reason, the typical figure of

merit in XOR games is the bias, twice the amount by which the winning
probability can exceed 1

2
. Equivalently, the bias is the probability of

winning minus the probability of losing. For an XOR game G, denote
by β(G) and β∗(G) the maximum biases under classical and entangled
strategies.

Proposition 4.1. Let G be an XOR game given by a game matrix M ∈
{−1, 1}n×n and probability distribution π. Then, β(G) = ‖M ◦ π‖∞→1,
where M ◦ π = (Mijπij)

n
i,j=1.
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Proof: Let f, g : [n]→ {−1, 1}n be some deterministic classical strate-
gies for G. Notice that Mijf(i)g(j) = +1 if the players win on (i, j)
and −1 otherwise. Therefore, the bias can be expressed as

n∑
i,j=1

πijMijf(i)g(j),

which is clearly at most ‖M‖∞→1. 2

5. Tsirelson’s theorem

Tsirelson proved that the entangled bias of any XOR game is given in
terms of the Grothendieck norm of the matrix M ◦ π = (Mstπst)

n
s,t=1.

Theorem 5.1 (Tsirelson). Let G be an XOR game with game matrix
M ∈ {−1, 1}n×n and probability distribution π : [n] × [n] → [0, 1].
Then, β∗(G) = ‖M ◦ π‖G.

Combining this with Proposition 4.1 and Grothendieck’s inequality, we
get the following immediate corollary.

Corollary 5.2. For a any XOR game G, we have β∗(G) ≤ KGβ(G).

A key ingredient for Theorem 5.1 is the following lemma.

Lemma 5.3. For each d ∈ N there is a D ∈ N and symmetric matrices
C1, . . . , Cd ∈ RD×D such that C2

i = IN and CiCj = −CjCi for all i 6= j.

Proof: Define the following three matrices:

I =

(
1 0
0 1

)
, X =

(
0 1
1 0

)
, Z =

(
1 0
0 −1

)
.

Observe that each of these is symmetric and squares to I. For each
i ∈ [d], define

Ci = I ⊗ · · · ⊗ I︸ ︷︷ ︸
d−i

⊗X ⊗ Z ⊗ · · · ⊗ Z︸ ︷︷ ︸
i−1

Clearly these matrices are symmetric and square to the identity. The
other desired property is easily verified using the fact XZ = −ZX. 2

Since any real symmetric matrix that squares to the identity has only
{−1, 1} eigenvalues, it is the difference of two (real) positive semi-
definite matrices. From this, we get the following simple corollary of
Lemma 5.3
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Corollary 5.4. For x ∈ Rd, let C(x) = x1C1 + · · ·+ xdCd. Then, for
any x, y ∈ Rd,

Tr(C(x)C(y)) = D〈x, y〉
If x ∈ Sd−1, then there exist real positive semidefinite matrices C(x)+, C(x)−
such that C(x) = C(x)+−C(x)−, where {C(x)+, C(x)−} is a measure-
ment.

Proof of Theorem 5.1: We first show that β∗(G) ≤ ‖M ◦ π‖G. Let
ψ ∈ Cd1 ⊗ Cd2 be a unit vector and for each s, t ∈ [n], let {As

+, A
s
−}

and {Bt
+, B

t
−} be {−1, 1}-valued measurements on Cd1 and Cd2 , re-

spectively. For each s, t ∈ [n] define As = As
+−As

− and Bt = Bt
+−Bt

−.
Then, the bias based on this strategy equals

n∑
s,t=1

πstMst

( ∑
a,b∈{−1,1}

ab 〈As
a ⊗Bt

bψ, ψ〉
)

=
n∑

s,t=1

πstMst 〈As ⊗Btψ, ψ〉.

Define the vectors

xs = As ⊗ Id2ψ and yt = Id1 ⊗Btψ.

and

us =

(
<(xs)
=(xs)

)
and vt =

(
<(yt)
−=(yt)

)
.

Then, since As and Bt are Hermitian,

〈us, vt〉 = <
(
〈xs, yt〉

)
= <

(
〈As ⊗Btψ, ψ〉

)
= 〈As ⊗Btψ, ψ〉.

We claim that us, vt have norm at most 1. First observe they their norm
is equal to that of xs, yt, respectively. Moreover, it suffices to show that
As and Bt have operator norm at most 1. We show this for As, the
same argument being applicable to Bt. Since As is Hermitian, it is
enough to show that |〈Asw,w〉| ≤ 1 for any unit vector w. To this
end, observe that As = 2As

+ − Id1 and that 0 ≤ 〈As
+w,w〉 ≤ 1, since

As
+ + As

− = Id1 and As
+ is positive semidefinite. Hence, 〈Asw,w〉 =

2〈As
+w,w〉 − 〈w,w〉 ∈ [−1, 1], which implies the claim.

Now we show that ‖M‖G ≤ β∗(G). For each s ∈ S and t ∈ T , let
xs, yt ∈ S2n−1 be some unit vectors. Let C : R2n → CD×D be the map
as in Corollary 5.4 for d = 2n. Let

ψ =
1√
D

D∑
i=1

ei ⊗ ei,
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where ei is the ith standard basis vector in CD. Clearly ψ is a unit
vector and so represents a valid state of a bi-partite quantum system
composed of two D-dimensional parts. Observe that for any two ma-
trices A,B ∈ CD×D, we have

〈A⊗Bψ,ψ〉 =
1

D

D∑
i,j=1

AijBij = Tr(ATB).

For each s ∈ S and t ∈ T , define the measurementsAs = {C(xs)+, C(xs)−}
and Bt = {C(yt)+, C(yt)−}. If the players perform these measurements
on their share of the state ψ, then the expected product of their mea-
surement outcomes is easily seen to equal

〈C(xs)⊗ C(yt)ψ, ψ〉 = Tr(C(xs)C(yt)) = 〈xs, yt〉.
Hence, the bias based on this strategy equals∑

(s,t)∈S×T

πstMst〈xs, yt〉.

Taking a supremum over unit vectors xs, yt, we see that we can achieve
a bias of ‖M ◦ π‖G. 2
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