
LECTURE NOTES ON APPLICATIONS OF
GROTHENDIECK’S INEQUALITY

QUANTUM QUERY ALGORITHMS

JOP BRIËT

Abstract. In this lecture we shall cover a result of Aaronson
et al. [AAI+16] that chacterizes one-query quantum algorithms in
terms of quadratic polynomials. In particular, we shall see an
extremely short proof of this result from [ABP18] based on the
factorization version of Grothendieck’s inequality.

1. Quantum query complexity

In the black-box model of quantum computation one has access to a
unitary operation, referred to as an oracle, that allows one to probe the
bits of an unknown string x ∈ {−1, 1}n in superposition. The goal in
this model is to learn some property of x given by a Boolean function
f : {−1, 1}n → {−1, 1}, when only given access to x through the
oracle. An application of the oracle is referred to as a query.

A quantum algorithm works by evolving the state of a quantum regis-
ter with queries interlaced with input-independent unitary operations.
To produce an output after making some number of queries, the al-
gorithm performs a two-outcome measurement and returns the result.
(We review a few more details in the next section). Such algorithms
are inherently random for two reasons. First, the algorithm may use
randomness in selecting which input-independent unitaries to use in
between queries. Second, the measurement outcomes be random, de-
pending on which state is measured.

Definition 1.1. Let ε ∈ (0, 1/2). The bounded-error quantum query
complexity of f : {−1, 1}n → {−1, 1}, denoted Qε(f), is the minimal
number of queries a quantum algorithm must make on the worst-case
input x ∈ {−1, 1}n to compute f(x) with probability at least 1− ε.

1

2 JOP BRIËT

More generally, this notion is defined for partial functions, for which one
only cares about inputs from a known subset of {0, 1}n. For simplicity
we will only consider “total” functions here. Determining the query
complexity of a function is unfortunately notoriously hard in general.

2. The polynomial method

A useful tool for proving lower bounds comes from a beautiful connec-
tion with polynomials, shown by Beals et al. [BBC+01]. In the following
all polynomial are assumed to be real and n-variate. A polynomial p
is bounded if it satisfies p(x) ∈ [−1, 1] for all x ∈ {−1, 1}n.

Lemma 2.1 (Beals et al.). For every t-query quantum algorithm A
that on input x ∈ {−1, 1}n returns a random sign A(x), there exists a
bounded degree-(2t) polynomial p such that p(x) = E[A(x)] for every x
(where the expectation is taken over the randomness of the output and
the algorithm).

It follows that if A computes f : {−1, 1}n → {−1, 1} with probability
at least 1 − ε, then p satisfies |p(x) − f(x)| ≤ 2ε for every x. Indeed,
if A computes f with error δ on x, then

p(x) = E[A(x)] = (1− δ)f(x)− δf(x) = (1− 2δ)f(x).

To prove lower bounds on Qε(f), one can thus instead try lower bound-
ing the smallest degree of a bounded polynomial p that for all inputs x
satisfies |p(x)− f(x)| ≤ 2ε. The minimal degree of such a polynomial,
denoted degε(f), is called the approximate (polynomial) degree of f .
This approach, known as the polynomial method, has been used with
great success for a large number of functions.

3. A converse to the polynomial method

If Lemma 2.1 had a converse, we would get a succinct characteriza-
tion of quantum algorithms in terms of polynomials. However, Ambai-
nis [Amb06] proved that this not the case, showing that for infinitely
many n, there is a function f : {−1, 1}n → {−1, 1} with deg1/3(f) ≤ nα

and Q1/3(f) ≥ nβ for some constants β > α > 0. Too bad. But this
result does leave open the possibility that constant-degree polynomials
characterize constant-query quantum algorithms. And indeed, Aaron-
son et al. [AAI+16] showed the following surprising result.

QUANTUM QUERY ALGORITHMS 3

Theorem 3.1 (Aaronson et al.). For every bounded quadratic poly-
nomial p, there exists a one-query quantum algorithm that, on in-
put x ∈ {−1, 1}n, returns a random sign with expectation Cp(x), where
C ∈ (0, 1] is an absolute constant.

In this lecture we will see a very short of this fact based on the fac-
torization version of Grothendieck’s inequality.1 Before going into this
proof, we first we review some basics of quantum query algorithms.

4. The quantum query model

A quantum query algorithm is given by a triple of complex vector spaces
(A,Q,W) and a set of unitary operators on V = A⊗Q⊗W. The three
spaces have the following specifications and interpretations:

• A = C2 represents an auxiliary register enabling “controlled”
operations (defined below).
• Q = Cn represents a query register on which input-dependent

operations are performed.
• W = Cd (for some d ∈ N) is a workspace register, which is

affected nontrivially only by input-independent operations.

The space V represents the physical system on which the algorithm
does its computations. The set of (pure) states that the system can be
in is formed by the set of unit vectors in V. Computations are done
via unitary operations on V and {−1, 1}-valued measurements on A.

Such a measurement does the following. Suppose the system is in state

(1) ψ = e0 ⊗ φ0 + e1 ⊗ φ1 ∈ V,

where e0, e1 ∈ A denote the standard basis vectors for C2 and φ0, φ1

belong to Q⊗W. Then, a {−1, 1}-valued measurement on A produces
a random sign whose expected value equals ‖φ0‖22 − ‖φ1‖22.

Given a unitary operator U on Q⊗W, let its controlled version be the
unitary operator on V defined by

e0 ⊗ φ 7→ e0 ⊗ φ
e1 ⊗ φ 7→ e1 ⊗ (Uφ).

1The original proof presented in [AAI+16] also used this, but only as a lemma
in a more intricate argument.

4 JOP BRIËT

An input x ∈ {−1, 1}n is represented by the unitary operator on Q
given by the n× n diagonal matrix with diagonal x, denoted Diag(x).
A query to x is then made by either performing IA ⊗ Diag(x)⊗ IW or
the controlled version of Diag(x)⊗ IW on V, where IA, IW are identity
operators on A,W, respectively.2

A t-query quantum algorithm begins by initializing V in the first stan-
dard basis vector (a.k.a. the all-zero state) and continues by interleaving
a sequence of unitaries U0, . . . , Ut on V with queries on (A,Q). Finally,
the algorithm performs a measurement on A (see figure 1).

...

W

A

Q U0

D
ia
g
(x

)

U1 . . .

D
ia
g
(x

)

Ut

Figure 1. A t-query quantum algorithm that starts with the all-
zero state, interlaces controlled queries to x ∈ {−1, 1}n with fixed
unitaries U0, . . . , Ut and concludes by measuring the register A.

Important unitary operations on C2 are the Hadamard and bit-flip:

H =
1√
2

[
1 1
1 −1

]
and X =

[
0 1
1 0

]
.

A measurement is said to be performed in the Hadamard basis if, prior
to the measurement, a Hadamard is performed on A. A moment’s
reflection shows that if the state (1) is measured in the Hadamard
basis, then the expected outcome equals 2<〈φ0, φ1〉.

5. Proof of Theorem 3.1

Let us recall the factorization version of Grothendieck’s inequality.

Theorem 5.1 (Grothendieck). For every positive integer n and ma-
trix A ∈ Rn×n, there exist positive unit vectors u, v ∈ R>0 ∩ Sn−1 such
that the matrix

(2) B =
1

KG

Diag(u)−1ADiag(v)−1

satisfies ‖B‖ ≤ ‖A‖`∞→`1.

2Since these act trivially on W, queries are usually said to act only on (A,Q).

QUANTUM QUERY ALGORITHMS 5

It turns out that it is sufficient to prove Theorem 3.1 for the case where
the polynomial p is a quadratic form (see [AAI+16]).

Lemma 5.2. There exists an absolute constant C ∈ (0, 1] such that the
following holds. For any bounded quadratic polynomial p, there exists
a matrix A ∈ R(n+1)×(n+1) with ‖A‖`∞→`1 ≤ 1, such that the quadratic
form q(y) = yTAy satisfies q((x, 1)) = Cp(x) for all x ∈ {−1, 1}n.

Proof of Theorem 3.1 (sketch): By Lemma 5.2 it suffices to prove the
statement for a quadratic form p(x) = xTAx given by some matrix
A ∈ Rn×n such that ‖A‖`∞→`1 ≤ 1. Theorem 5.1 gives unit vectors u, v
such that the matrix B as in (2) has operator norm at most 1. Unitary
matrices have norm exactly 1 and of course represent the type of op-
eration a quantum algorithm can implement. Moreover, since u, v are
unit vectors, they represent valid states of a quantum system.

Observe that for w, z ∈ Rn, we have Diag(w)z = Diag(z)w. It follows
that we get the following “factorization formula”:

(3)
xTAx

KG

(2)
= xT Diag(u)BDiag(v)x = uT Diag(x)BDiag(x)v.

If we assume for the moment that the matrix B actually is unitary,
then the right-hand side of (3) suggests the simple one-query quantum
algorithm described in Figure 2.

A

Q
...

H X X H

Uv Uu

D
ia
g
(x

)

B

Figure 2. Let Uu, Uv ∈ Cn×n be unitaries that have u, v as their first
columns, respectively. The algorithm initializes a 2n-dimensional
register (A,Q) in the all-zero state, transforms this state into the
superposition 1√

2
(e0 ⊗ u + e1 ⊗ v), queries the input x via the (un-

controlled) unitary Diag(x) applied to Q, applies a controlled-B, and
finishes by measuring A in the Hadamard basis.

Using (3), it can be shown that expected output of the algorithm is

(4)
〈

Diag(u)x,BDiag(v)x
〉

=
xTAx

KG

= p(x)/KG,

giving Theorem 3.1 with C = 1/KG.

6 JOP BRIËT

In the general case where B is not necessarily unitary, we can use the
fact that, by the Russo–Dye Theorem and Carathéodory’s Theorem,
B is a convex combination of at most n2 + 1 unitaries. The algorithm
can thus use randomness to effect B on expectation. 2

6. Exercises

Exercise 6.1. Show that (4) is indeed the expected output.

References

[AAI+16] Scott Aaronson, Andris Ambainis, Janis Iraids, Martins Kokainis,
and Juris Smotrovs. Polynomials, quantum query complexity, and
Grothendieck’s inequality. In LIPIcs-Leibniz International Proceedings
in Informatics, volume 50. Schloss Dagstuhl-Leibniz-Zentrum fuer In-
formatik, 2016.

[ABP18] S. Arunachalam, J. Briët, and C. Palazuelos. Quantum query algorithms
are completely bounded forms. In 9th Innovations in Theoretical Com-
puter Science Conference ITCS, 2018, volume 94, pages 3:1–3:21, 2018.

[Amb06] Andris Ambainis. Polynomial degree vs. quantum query complexity. J.
Comput. System Sci., 72(2):220–238, 2006.

[BBC+01] Robert Beals, Harry Buhrman, Richard Cleve, Michele Mosca, and
Ronald de Wolf. Quantum lower bounds by polynomials. J. ACM,
48(4):778–797, 2001.

	1. Quantum query complexity
	2. The polynomial method
	3. A converse to the polynomial method
	4. The quantum query model
	5. Proof of Theorem 3.1
	6. Exercises
	References

