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Abstract. In this lecture we will discuss Grothendieck’s inequal-
ity in the context of combinatorial optimization. In particular, we
will cover a result of Alon and Naor [AN06] on approximating the
cut norm of a matrix in polynomial time.

1. Approximating the cut norm

The cut norm of a matrix A ∈ Rm×n is defined by

‖A‖cut = max
S⊆[m],T⊆[n]

∣∣∣∑
i∈S

∑
j∈T

Aij

∣∣∣.
The problem of computing the cut norm of a given matrix is relevant in
a variety of problems. Examples include finding regular (or Szemerédi)
partitions of graphs [ADL+94] and so-called cut decompositions of ma-
trices [FK99]. Unfortunately, this problem is unlikely to be tractable,
even in an approximate sense. Say that an algorithm ALG approx-
imates the cut norm of a matrix A to within a factor c ∈ (0, 1] if it
returns a number ALG(A) whose value lies between c‖A‖cut and ‖A‖cut.

Proposition 1.1 (Alon–Naor). If P 6= NP, then there is no polynomial-
time algorithm that, given a matrix A ∈ Rm×n, approximates ‖A‖cut to
within a factor greater than 16/17 + ε for any fixed ε > 0.

The proof of this proposition uses a simple reduction from the maxcut
problem. Given a graph G = (V,E) and a bi-partition (S, Sc) of the
vertex set, define the cut value of (S, Sc) to be the number of edges with
one endpoint in S and one endpoint in Sc. The maxcut problem asks
to compute the maximum cut value among all bi-partitions. A famous
result of H̊astad [H̊as01] asserts that it is NP-hard to approximate

1



2 JOP BRIËT

maxcut to within a factor 16/17 + ε for any fixed ε > 0. However,
things don’t get much worse than Proposition 1.1.

Theorem 1.2 (Alon–Naor). There exists a randomized polynomial-
time algorithm that approximates the cut norm to within a factor 0.56.

The key to Theorem 1.2 is a connection between Grothendieck’s in-
equality and semidefinite programming.

2. Semidefinite programming

Recall that a symmetric matrix A ∈ Rn×n is positive semidefinite if all
of its eigenvalues are nonnegative, in which case we write A � 0. An-
other characterization of positive semidefinite matrices is given by the
set of Gram matrices. For d, n ∈ N and a set of vectors x1, . . . , xn ∈ Rd,
define Gram(x1, . . . , xn) to be the n× n matrix given by (〈xi, xj〉)ni,j=1.
A matrix is positive semidefinite if and only if it is a Gram matrix.
Given a positive semidefinite matrix, a set of Gram vectors can be
found in polynomial time (due to the fact that there is a polynomial-
time algorithm for the Cholesky decomposition).

A important tool in optimization is a polynomial-time algorithm for
maximizing linear functionals over positive semidefinite matrices sub-
ject to linear constraints. A simple generic semidefinite program has
the following form: Let A,C1, . . . , Ck ∈ Rn×n be symmetric matrices
and b1, . . . , bk ∈ R be real numbers. Denote by 〈A,X〉 =

∑n
i,j=1AjiXij

the trace inner product.

maximize 〈A,X〉
subject to X � 0

〈X,Ci〉 = bi ∀i ∈ {1, . . . , k}.

The function X 7→ 〈A,X〉 is referred to as the objective function and
a matrix X is feasible if it simultaneously satisfies all the constrains
X � 0 and 〈X,Ci〉 ≤ bi for each i ∈ {1, . . . , k}. The maximum possible
value objective value over the set of feasible solutions is the optimum.
A feasible solution whose objective value is within an additive error
ε > 0 of the optimum can be found in polynomial time (in the size of
the input (A,C1, . . . , Ck, b1, . . . , bk) and the logarithm of 1/ε.)
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3. The Alon–Naor algorithm

The starting point for Theorem 1.2 is the following simple proposition.

Proposition 3.1. Let m,n be positive integers and let n′ = max{m,n}.
For any matrix A ∈ Rm×n there exists a matrix B ∈ Rn′×n′

such that

‖A‖cut =
1

4
‖B‖∞→1.

It thus suffices to approximate the ∞ → 1 norm of a matrix. This is
where the meat is.

Theorem 3.2. For any ε > 0, there exists a randomized polynomial-
time algorithm that, given a matrix A ∈ Rn×n, returns random vectors
a, b ∈ {−1, 1}n such that

(1) 0.56 ‖A‖∞→1 − ε ≤ E
[ n∑
i,j=1

Aijaibj

]
≤ ‖A‖∞→1.

Theorem 3.2 follows from the following link between the Grothendieck
norm and semidefinite programming.

Proposition 3.3. For any fixed ε > 0, there is a polynomial-time al-
gorithm that, given a matrix A ∈ Rn×n, returns unit vectors x1, . . . , xn,
y1, . . . , yn ∈ S2n−1 such that

(2)
∣∣∣ n∑
i,j=1

Aij〈xi, yj〉 − ‖A‖G
∣∣∣ ≤ ε.

Proof: Define the 2n × 2n block matrix B =
[
0 A
0 0

]
. Consider the

semidefinite program

maximize 〈B,Z〉
subject to Z � 0

Zkk = 1 ∀k ∈ [2n].

By the remarks above, this program can be solved up to error ε in
polynomial time. Let Z be a feasible solution. Then since Z is positive
semidefinite, it is a Gram matrix, and so there exist vectors z1, . . . , z2n
such that Z = Gram(z1, . . . , z2n). Moreover, since Zkk = 1 for each
k ∈ [2n], it follows that each zk is a unit vector. Rename these vectors
to xi = zi for each i ∈ [n] and yj = zj for each j ∈ {n + 1, . . . , 2n}.
From this, it is easy to see that the optimum equals ‖A‖G. 2
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The main idea behind the algorithm in Theorem 3.2 is to use Krivine’s
proof of Grothendieck’s inequality. Recall that this proof used the
following lemma.

Lemma 3.4 (Krivine). Let x1, . . . , xn, y1, . . . , yn ∈ S2n−1 be unit vec-
tors. Then, there exist unit vectors u1, . . . , un, v1, . . . , vn ∈ S2n−1 such
that for all i, j ∈ [n], we have

(3) 〈ui, vj〉 = sin(c〈xi, yj〉),
where c = sinh−1(1).

In addition, we had Grothendieck’s identity.

Lemma 3.5 (Grothendieck’s identity). Let x, y be n-dimensional real
unit vectors and let g = (g1, . . . , gn) ∼ N(0, In) be an n-dimensional
standard Gaussian vector. Then,

(4) E
[

sign(〈x, g〉) sign(〈y, g〉)
]

=
2

π
arcsin(〈x, y〉).

Proof of Theorem 3.2: We first use Proposition 3.3 to efficiently find
vectors x1, . . . , xn, y1, . . . , yn ∈ S2n−1 such that

n∑
i,j=1

Aij〈xi, yj〉 ≥ ‖A‖G − ε ≥ ‖A‖∞→1 − ε.

By Lemma 3.4, there exist vectors u1, . . . , un, v1, . . . , vn ∈ S2n−1 such
that (3) holds for all i, j ∈ [n]. Hence, such vectors can be found in
polynomial time using semidefinite programming. Now sample a ran-
dom vector g ∈ R2n from the standard Gaussian distribution N(0, I2n)
and let ai = sign(〈ui, g〉) and bj = sign(〈vj, g〉). The claim now follows
from Grothendieck’s identity (Lemma 3.5). 2

4. Exercises

Exercise 4.1. In the proof of Theorem 1.2 we claimed that the vec-
tors ui, vj from Lemma 3.4 can be found efficiently using semidefinite
programming. Give a semidefinite program that produces such vectors.
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