
LECTURE NOTES ON APPLICATIONS OF
GROTHENDIECK’S INEQUALITY

APPROXIMATING THE CUT NORM

JOP BRIËT

Abstract. In this lecture we will discuss Grothendieck’s inequal-
ity in the context of combinatorial optimization. In particular, we
will cover a result of Alon and Naor [AN06] on approximating the
cut norm of a matrix in polynomial time.

1. Approximating the cut norm

The cut norm of a matrix A ∈ Rm×n is defined by

‖A‖cut = max
S⊆[m],T⊆[n]

∣∣∣∑
i∈S

∑
j∈T

Aij

∣∣∣.
The problem of computing the cut norm of a given matrix is relevant in
a variety of problems. Examples include finding regular (or Szemerédi)
partitions of graphs [ADL+94] and so-called cut decompositions of ma-
trices [FK99]. Unfortunately, this problem is unlikely to be tractable,
even in an approximate sense. Say that an algorithm ALG approx-
imates the cut norm of a matrix A to within a factor c ∈ (0, 1] if it
returns a number ALG(A) whose value lies between c‖A‖cut and ‖A‖cut.

Proposition 1.1 (Alon–Naor). If P 6= NP, then there is no polynomial-
time algorithm that, given a matrix A ∈ Rm×n, approximates ‖A‖cut to
within a factor greater than 16/17 + ε for any fixed ε > 0.

The proof of this proposition uses a simple reduction from the maxcut
problem. Given a graph G = (V,E) and a bi-partition (S, Sc) of the
vertex set, define the cut value of (S, Sc) to be the number of edges with
one endpoint in S and one endpoint in Sc. The maxcut problem asks
to compute the maximum cut value among all bi-partitions. A famous
result of H̊astad [H̊as01] asserts that it is NP-hard to approximate

1

2 JOP BRIËT

maxcut to within a factor 16/17 + ε for any fixed ε > 0. However,
things don’t get much worse than Proposition 1.1.

Theorem 1.2 (Alon–Naor). There exists a randomized polynomial-
time algorithm that approximates the cut norm to within a factor 0.56.

The key to Theorem 1.2 is a connection between Grothendieck’s in-
equality and semidefinite programming.

2. Semidefinite programming

Recall that a symmetric matrix A ∈ Rn×n is positive semidefinite if all
of its eigenvalues are nonnegative, in which case we write A � 0. An-
other characterization of positive semidefinite matrices is given by the
set of Gram matrices. For d, n ∈ N and a set of vectors x1, . . . , xn ∈ Rd,
define Gram(x1, . . . , xn) to be the n× n matrix given by (〈xi, xj〉)ni,j=1.
A matrix is positive semidefinite if and only if it is a Gram matrix.
Given a positive semidefinite matrix, a set of Gram vectors can be
found in polynomial time (due to the fact that there is a polynomial-
time algorithm for the Cholesky decomposition).

A important tool in optimization is a polynomial-time algorithm for
maximizing linear functionals over positive semidefinite matrices sub-
ject to linear constraints. A simple generic semidefinite program has
the following form: Let A,C1, . . . , Ck ∈ Rn×n be symmetric matrices
and b1, . . . , bk ∈ R be real numbers. Denote by 〈A,X〉 =

∑n
i,j=1AjiXij

the trace inner product.

maximize 〈A,X〉
subject to X � 0

〈X,Ci〉 = bi ∀i ∈ {1, . . . , k}.

The function X 7→ 〈A,X〉 is referred to as the objective function and
a matrix X is feasible if it simultaneously satisfies all the constrains
X � 0 and 〈X,Ci〉 ≤ bi for each i ∈ {1, . . . , k}. The maximum possible
value objective value over the set of feasible solutions is the optimum.
A feasible solution whose objective value is within an additive error
ε > 0 of the optimum can be found in polynomial time (in the size of
the input (A,C1, . . . , Ck, b1, . . . , bk) and the logarithm of 1/ε.)

APPROXIMATING THE CUT NORM 3

3. The Alon–Naor algorithm

The starting point for Theorem 1.2 is the following simple proposition.

Proposition 3.1. Let m,n be positive integers and let n′ = max{m,n}.
For any matrix A ∈ Rm×n there exists a matrix B ∈ Rn′×n′

such that

‖A‖cut =
1

4
‖B‖∞→1.

It thus suffices to approximate the ∞ → 1 norm of a matrix. This is
where the meat is.

Theorem 3.2. For any ε > 0, there exists a randomized polynomial-
time algorithm that, given a matrix A ∈ Rn×n, returns random vectors
a, b ∈ {−1, 1}n such that

(1) 0.56 ‖A‖∞→1 − ε ≤ E
[n∑
i,j=1

Aijaibj

]
≤ ‖A‖∞→1.

Theorem 3.2 follows from the following link between the Grothendieck
norm and semidefinite programming.

Proposition 3.3. For any fixed ε > 0, there is a polynomial-time al-
gorithm that, given a matrix A ∈ Rn×n, returns unit vectors x1, . . . , xn,
y1, . . . , yn ∈ S2n−1 such that

(2)
∣∣∣ n∑
i,j=1

Aij〈xi, yj〉 − ‖A‖G
∣∣∣ ≤ ε.

Proof: Define the 2n × 2n block matrix B =
[
0 A
0 0

]
. Consider the

semidefinite program

maximize 〈B,Z〉
subject to Z � 0

Zkk = 1 ∀k ∈ [2n].

By the remarks above, this program can be solved up to error ε in
polynomial time. Let Z be a feasible solution. Then since Z is positive
semidefinite, it is a Gram matrix, and so there exist vectors z1, . . . , z2n
such that Z = Gram(z1, . . . , z2n). Moreover, since Zkk = 1 for each
k ∈ [2n], it follows that each zk is a unit vector. Rename these vectors
to xi = zi for each i ∈ [n] and yj = zj for each j ∈ {n + 1, . . . , 2n}.
From this, it is easy to see that the optimum equals ‖A‖G. 2

4 JOP BRIËT

The main idea behind the algorithm in Theorem 3.2 is to use Krivine’s
proof of Grothendieck’s inequality. Recall that this proof used the
following lemma.

Lemma 3.4 (Krivine). Let x1, . . . , xn, y1, . . . , yn ∈ S2n−1 be unit vec-
tors. Then, there exist unit vectors u1, . . . , un, v1, . . . , vn ∈ S2n−1 such
that for all i, j ∈ [n], we have

(3) 〈ui, vj〉 = sin(c〈xi, yj〉),
where c = sinh−1(1).

In addition, we had Grothendieck’s identity.

Lemma 3.5 (Grothendieck’s identity). Let x, y be n-dimensional real
unit vectors and let g = (g1, . . . , gn) ∼ N(0, In) be an n-dimensional
standard Gaussian vector. Then,

(4) E
[

sign(〈x, g〉) sign(〈y, g〉)
]

=
2

π
arcsin(〈x, y〉).

Proof of Theorem 3.2: We first use Proposition 3.3 to efficiently find
vectors x1, . . . , xn, y1, . . . , yn ∈ S2n−1 such that

n∑
i,j=1

Aij〈xi, yj〉 ≥ ‖A‖G − ε ≥ ‖A‖∞→1 − ε.

By Lemma 3.4, there exist vectors u1, . . . , un, v1, . . . , vn ∈ S2n−1 such
that (3) holds for all i, j ∈ [n]. Hence, such vectors can be found in
polynomial time using semidefinite programming. Now sample a ran-
dom vector g ∈ R2n from the standard Gaussian distribution N(0, I2n)
and let ai = sign(〈ui, g〉) and bj = sign(〈vj, g〉). The claim now follows
from Grothendieck’s identity (Lemma 3.5). 2

4. Exercises

Exercise 4.1. In the proof of Theorem 1.2 we claimed that the vec-
tors ui, vj from Lemma 3.4 can be found efficiently using semidefinite
programming. Give a semidefinite program that produces such vectors.

References

[ADL+94] N. Alon, R. A. Duke, H. Lefmann, V. Rödl, and R. Yuster. The algo-
rithmic aspects of the regularity lemma. J. Algorithms, 16(1):80–109,
1994.

APPROXIMATING THE CUT NORM 5

[AN06] Noga Alon and Assaf Naor. Approximating the cut-norm via
Grothendieck’s inequality. SIAM J. Comput., 35(4):787–803 (elec-
tronic), 2006. Preliminary version in STOC’04.

[FK99] Alan Frieze and Ravi Kannan. Quick approximation to matrices and
applications. Combinatorica, 19(2):175–220, 1999.

[H̊as01] Johan H̊astad. Some optimal inapproximability results. J. ACM,
48(4):798–859, 2001.

	1. Approximating the cut norm
	2. Semidefinite programming
	3. The Alon–Naor algorithm
	4. Exercises
	References

