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Abstract. In this lecture we cover an efficient approximation al-
gorithm for community detection in the sparse stochastic block
model due to Guédon and Vershynin [GV15].

1. Community detection in the SBM

The stochastic block model is a simple model for inhomogeneous net-
works. Here, an n-element vertex set is partitioned into two (n/2)-sided
vertex subsets S, T ⊆ {1, . . . , n}, the communities. For some real num-
bers 1 ≥ p > q ≥ 0, each pair of distinct vertices independently forms
an edge with probability p if they belong to the same community and
with probability q if they belong to different communities. For the pur-
pose of this lecture, we shall consider the slightly non-standard model
in which each loop is also included independently with probability p.
Denote the resulting probability distribution over graphs by Ḡ(n, p, q).
The community detection problem asks to recover the communities S
and T when we are given a single sample from Ḡ(n, p, q).

There are many results for the dense regime, where the average degree
(p+q)n is of order Ω(log n). Less is known about the sparse case, where
the average degree is constant, p = Θ(1/n). In this lecture we will see
an efficient approximation algorithm from [GV15] for the latter case.

Theorem 1.1 (Guédon and Vershynin). Let ε ∈ (0, 1) and n ≥ 104/ε2.
Furthermore assume that for p = a/n and q = b/n, we have

max{(p(1− p), q(1− q)} ≥ 20

n
and (a− b)2 ≥ 104(a+ b)

ε2
.

Then, there exists a polynomial-time algorithm for community detection
that, with probability at least 1−e3/5n, misclassifies at most εn vertices.

1



2 JOP BRIËT

2. The ideal situation

To gain intuition for the algorithm, we first consider a highly idealized
situation. Let A be the adjacency matrix of a random graph with
distribution Ḡ(n, p, q). Let Ā = E[A] be its expectation and observe
that if S = {1, . . . , n/2} and T = {n/2 + 1, . . . , n}, then

Ā =

[
pJn/2 qJn/2
qJn/2 pJn/2

]
,

where Jd denotes the d× d all-ones matrix.

Define the random matrixB = A−p+q
2
Jn and its expectation B̄ = E[B].

Note that if S and T are again arranged consecutively, then

B̄ = Ā− p+ q

2
Jn =

p− q
2

[
Jn/2 −Jn/2
−Jn/2 Jn/2

]
.

The idealized situation we will consider is that we posses the matrix Ā,
which implies that we also posses B̄, and that we can efficiently find
an optimizer of the following integer quadratic optimization problem:

OPT(M) = maximize 〈M,xxT〉
subject to x ∈ {−1, 1}n.

The unique optimizer to OPT(B̄) is easily seen to be x̄ = 1S − 1T
(up-to a sign). Hence, this optimizer correctly labels the vertices with
+1 if they belong to S and with −1 if they belong to T .

Unfortunately, this situation is unrealistic for two reasons. First, we
do not have Ā, we only have single sample, A. Second, it is NP-hard
to solve the above optimzation problem in general (and so an efficient
way to find x̄ is unlikely to exist).

3. The algorithm

To deal with the real situation in which we posses the random matrix A,
and therefore B, and are content with an approximate solution, we
consider instead the following alternative optimization problem.
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maximize 〈B,Z〉
subject to Z � 0(1)

diag(Z) = 1,

where diag(Z) denotes the vector forming the diagonal of A and 1
denotes the all-ones vector. An optimal solution for this semidefinite
program can be found in polynomial time.1 The following theorem and
lemma suffice to prove Theorem 1.1 (see the exercise section below).

Theorem 3.1 (Guédon–Vershynin). There is an absolute constant C ∈
(0,∞) such that the following holds. Let n, p, q, ε be as in Theorem 1.1.

Let Z̃ be an optimal solution for the semidefinite program (1). Then,
with probability at least 1− 104/5n, we have

‖Z̃ − x̄x̄T‖2F ≤ Cεn,

where ‖X‖2F = 〈X,X〉 is the squared Frobenius norm and x̄ = 1S − 1T .

Lemma 3.2. Let x̃ be an eigenvector of Z̃ corresponding to its largest
eigenvalue with ‖x̃‖22 = n. Then,

min
α∈{−1,1}

‖αx̃− x̄‖22 ≤ εn.

In particular, either (sign(x̃i))
n
i=1 or its negation agrees with x̄ on at

least a (1− ε)-fraction of the coordinates.

4. Analysis of the algorithm

Grothendieck’s inequality plays a crucial part in the analysis of the
algorithm. Let us recall it once more for our convenience.

Theorem 4.1 (Grothendieck’s inequality). There exists an absolute
constant KG ∈ (1, 2) such that the following holds. For any positive
integer n and matrix A ∈ Rn×n, we have

(2) ‖A‖G ≤ KG‖A‖∞→1.

We will work out the parts of the analysis that use the inequality, in
particular in the proof of Theorem 3.1. The other parts are not difficult
and can be found in [GV15]. (There, the proof of Lemma 3.2 uses a

1More precisely, for any δ > 0, there is a poly(n, log(1/δ))-time algorithm giving
a feasible matrix Z such that 〈B,Z〉 is within δ of the optimum.
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simple application of a theorem of Davis and Khan.) For C ∈ Rn×n,
denote by SDP(C) the semidefinite program (1) with B replaced by C.

Proposition 4.2. The semidefinite program SDP(B̄) has a unique op-
timizer given by Z̄ = x̄x̄T.

Proposition 4.3. There exists an absolute constant C > 0 such that
with probability at least 1− 104/5n, we have

‖B − B̄‖∞→1 ≤ C
√
p+ q n3/2.

The proof of Proposition 4.3 follows from a standard but careful appli-
cation of the Hoeffding bound.

Now we apply Grothendieck’s inequality.

Proposition 4.4. Let δ = KG‖B − B̄‖∞→1. Let Z̃ be an optimal
solution to the (random) semidefinite program SDP(B). Then,

〈B̄, Z̃〉 ≥ 〈B̄, Z̄〉 − 2δ.

Proof: By Grothendieck’s inequality

〈B, Z̃〉 − 〈B̄, Z̃〉 = 〈B − B̄, Z̃〉 ≤ ‖B − B̄‖G ≤ δ(3)

〈B̄, Z̄〉 − 〈B, Z̄〉 = 〈B̄ −B, Z̄〉 ≤ ‖B̄ −B‖G ≤ δ.(4)

Since Z̃ is optimal for SDP(B), we get

〈B̄, Z̃〉
(3)

≥ 〈B, Z̃〉 − δ ≥ 〈B, Z̄〉 − δ
(4)

≥ 〈B̄, Z̄〉 − 2δ.

2

Proof of Theorem 3.1: Proposition 4.2 asserts that Z̄ = x̄x̄T. Since

both Z̄ and Z̃ belong to [−1, 1]n×n,

‖Z̃ − Z̄‖2F = ‖Z̃‖2F + ‖Z̄‖2F − 2〈Z̃, Z̄〉 ≤ 2(n2 − 〈Z̃, Z̄〉).
Observe that B̄ = p−q

2
Z̄. Then, by Proposition 4.4,

p− q
2
〈Z̃, Z̄〉 = 〈B̄, Z̃〉

≥ 〈B̄, Z̄〉 − 2δ

=
p− q

2
n2 − 2δ.

Rearranging gives ‖Z̃− Z̄‖2F ≤ 2
(
n2−n2+2δ) = 4δ/(p−q). By Propo-

sition 4.3 and our assumptions on p and q, it follows δ is sufficiently
small with the desired probability. The result now follows from. 2
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5. Exercises

Exercise 5.1. Let x̃ and α ∈ {−1, 1}n be as in Lemma 3.2. Show that
the sign vector y = sign(αx̃) differs from x̄ = 1S − 1T in at most εn
coordinates. In particular, conclude with Theorem 1.1.

Exercise 5.2. In the proof of Theorem 3.1 we claimed that both Z̄

and Z̃ belong to [−1, 1]n×n. Why is this true?

Exercise 5.3. Prove Proposition 4.2.
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