
1

Mark de Berg (TU Eindhoven)

COMPUTATIONAL GEOMETRY

An Introduction Through Randomized Incremental Algorithms

randomized
incremental
construction

Voronoi
diagrams and

Delaunay
triangulations

Davenport-
Schinzel

sequences

substructures in
arrangements

lazy
randomized
incremental
construction

applications of
upper envelopes

the
Clarkson-Shor

technique

2

Geometry is everywhere . . .

• geographic information systems

• computer-aided design and manufacturing

• virtual reality

• robotics

• computational biology

• sensor networks

• databases

• and more . . .

age

salary

30 45

35K

50K

Algorithms for Spatial Data

3

area within algorithms research dealing with spatial data

Computational Geometry

• aim for provably correct solutions (no heuristics)

• theoretical analysis of running time, memory usage: O(· · ·)

Computational Geometry

4

example problem: line-segment intersection

Computational Geometry

Compute all k intersections in a
set S of n line segments.

4

example problem: line-segment intersection

1. for every pair of segments in S
2. do compute (possible) intersection

• running time O(n2)

• can we do better if k is small?
yes: O(n log n)

Computational Geometry

Compute all k intersections in a
set S of n line segments.

4

example problem: line-segment intersection

1. for every pair of segments in S
2. do compute (possible) intersection

Computational geometry

• focus on scale-up behavior

• basic operations are assumed available
(compute intersection of two lines, distance
between two points, etc.)

• running time O(n2)

• can we do better if k is small?
yes: O(n log n)

Computational Geometry

Compute all k intersections in a
set S of n line segments.

5

Algorithmic design techniques and tools

• plane sweep

• geometric divide-and-conquer

• randomized incremental construction

• parametric search

• (multi-level) geometric data structures

Geometric structures and concepts

• Voronoi diagrams and Delaunay triangulations

• arrangements

• cuttings, simplicial partitions, polynomial partitions

• coresets

Computational Geometry: Tools of the Trade

6

substructures in
arrangements

Davenport-
Schinzel

sequences
Voronoi

diagrams and
Delaunay

triangulations

randomized
incremental
construction

Course Overview

lazy
randomized
incremental
construction

applications of
upper

envelopes

the
Clarkson-Shor

technique

7

Course Overview

substructures in
arrangements

Davenport-
Schinzel

sequences
Voronoi

diagrams and
Delaunay

triangulations

randomized
incremental
construction

lazy
randomized
incremental
construction

applications of
upper

envelopes

the
Clarkson-Shor

technique

8

Warm-up Exercise

8

Warm-up Exercise

Analyze worst-case and the expected running time of the following algorithm

ParanoidMax(A)
B computes maximum in an array A[0..n− 1]

1: Randomly permutate the elements in the array A
2: max ← A[0]
3: for i← 1 to n− 1 do
4: if A[i] > max then
5: max ← A[i]
6: for j ← 0 to i− 1 do
7: if A[j] > max then error

8: return max

to be on the safe side, check if A[i] is
indeed the largest element in A[0..i]

9

Warm-up Exercise

Analyze worst-case and the expected running time of the following algorithm

ParanoidMax(A)
B computes maximum in an array A[0..n− 1]

1: Randomly permutate the elements in the array A
2: max ← A[0]
3: for i← 1 to n− 1 do
4: if A[i] > max then
5: max ← A[i]
6: for j ← 0 to i− 1 do
7: if A[j] > max then error

8: return max

9

Warm-up Exercise

Analyze worst-case and the expected running time of the following algorithm

ParanoidMax(A)
B computes maximum in an array A[0..n− 1]

1: Randomly permutate the elements in the array A
2: max ← A[0]
3: for i← 1 to n− 1 do
4: if A[i] > max then
5: max ← A[i]
6: for j ← 0 to i− 1 do
7: if A[j] > max then error

8: return max

• generates permutation
uniformly at random

• assume this can be done
in O(n) time

10

Worst-case analysis

running time = O(n) +
∑n−1

i=1 (worst-case time for i-th iteration)

= O(n) +
∑n−1

i=1 O(i)

= O(n2)

11

Analysis of expected running time

E [running time] = E
[
O(n) +

∑n−1
i=1 time for i-th iteration

]
= O(n) +

∑n−1
i=1 E [time for i-th iteration]

11

Analysis of expected running time

E [running time] = E
[
O(n) +

∑n−1
i=1 time for i-th iteration

]
= O(n) +

∑n−1
i=1 E [time for i-th iteration]

E [time for i-th iteration] = Pr [max changes in i-th iteration] ·O(i)

+ Pr [max does not change] ·O(1)

11

Analysis of expected running time

E [running time] = E
[
O(n) +

∑n−1
i=1 time for i-th iteration

]
= O(n) +

∑n−1
i=1 E [time for i-th iteration]

E [time for i-th iteration] = Pr [max changes in i-th iteration] ·O(i)

+ Pr [max does not change] ·O(1)

backwards analysis

max changes when adding
A[i] to {A[0], . . . , A[i− 1]}

max changes when removing A[i]
from {A[0], . . . , A[i]}⇐⇒

11

Analysis of expected running time

E [running time] = E
[
O(n) +

∑n−1
i=1 time for i-th iteration

]
= O(n) +

∑n−1
i=1 E [time for i-th iteration]

E [time for i-th iteration] = Pr [max changes in i-th iteration] ·O(i)

+ Pr [max does not change] ·O(1)

backwards analysis

max changes when adding
A[i] to {A[0], . . . , A[i− 1]}

max changes when removing A[i]
from {A[0], . . . , A[i]}⇐⇒

6 1/i

11

Analysis of expected running time

E [running time] = E
[
O(n) +

∑n−1
i=1 time for i-th iteration

]
= O(n) +

∑n−1
i=1 E [time for i-th iteration]

E [time for i-th iteration] = Pr [max changes in i-th iteration] ·O(i)

+ Pr [max does not change] ·O(1)

backwards analysis

max changes when adding
A[i] to {A[0], . . . , A[i− 1]}

max changes when removing A[i]
from {A[0], . . . , A[i]}⇐⇒

6 1/i

= O(n)

11

Analysis of expected running time

E [running time] = E
[
O(n) +

∑n−1
i=1 time for i-th iteration

]
= O(n) +

∑n−1
i=1 E [time for i-th iteration]

E [time for i-th iteration] = Pr [max changes in i-th iteration] ·O(i)

+ Pr [max does not change] ·O(1)

backwards analysis

max changes when adding
A[i] to {A[0], . . . , A[i− 1]}

max changes when removing A[i]
from {A[0], . . . , A[i]}⇐⇒

6 1/i

= O(n)

with respect to random choices of algorithm,
no assumptions on input distribution

12

Sorting using (Randomized) Incremental Construction

13

Sorting using (Randomized) Incremental Construction

A geometric view of sorting

Input: A set S = {x1, . . . , xn} of n points in R1

Output: Sorted set I of intervals into which S partitions R1

x1 x2x3x4x5 x6

13

Sorting using (Randomized) Incremental Construction

A geometric view of sorting

Input: A set S = {x1, . . . , xn} of n points in R1

Output: Sorted set I of intervals into which S partitions R1

x1 x2x3x4x5 x6

Incremental construction:

Add points one by one, and update I after each addition

14

Sorting using (Randomized) Incremental Construction

IC-Sort(S)

1: I ← {[−∞,+∞]}
2: for j ← 1 to n do
3:

Find interval I = [x, x′] in I that contains xj
Remove I from I and insert [x, xj] and [xj , x

′] into I

4: return I

14

Sorting using (Randomized) Incremental Construction

IC-Sort(S)

1: I ← {[−∞,+∞]}
2: for j ← 1 to n do
3:

Find interval I = [x, x′] in I that contains xj
Remove I from I and insert [x, xj] and [xj , x

′] into I

4: return I
• for each point xi maintain a pointer to the interval
I ∈ I that contains xi

• for each interval I ∈ I maintain a conflict list K(I) that
stores all points contained in I

x1 x2x3x4x5 x6

I1 I2 I3

15

Sorting using (Randomized) Incremental Construction

IC-Sort(S)

1: I ← {[−∞,+∞]}
2: for j ← 1 to n do
3:

4: return I
• for each point xi maintain a pointer to the interval
I ∈ I that contains xi

• for each interval I ∈ I maintain a conflict list K(I) that
stores all points contained in I

x1 x2x3x4x5 x6

I1 I2 I3

15

Sorting using (Randomized) Incremental Construction

IC-Sort(S)

1: I ← {[−∞,+∞]}
2: for j ← 1 to n do
3:

4: return I
• for each point xi maintain a pointer to the interval
I ∈ I that contains xi

• for each interval I ∈ I maintain a conflict list K(I) that
stores all points contained in I

x1 x2x3x4x5 x6

I1 I2 I3

(i) Use pointer from xi to find interval I containing xi
(ii) Split I at xi into intervals I ′ and I ′′, and replace I in I by I ′, I ′′

(iii) Construct K(I ′) and K(I ′′) from K(I)
(iv) Update pointers of points in K(I ′) and K(I ′′)

15

Sorting using (Randomized) Incremental Construction

IC-Sort(S)

1: I ← {[−∞,+∞]}
2: for j ← 1 to n do
3:

4: return I
• for each point xi maintain a pointer to the interval
I ∈ I that contains xi

• for each interval I ∈ I maintain a conflict list K(I) that
stores all points contained in I

x1 x2x3x4x5 x6

I1 I2 I3

(i) Use pointer from xi to find interval I containing xi
(ii) Split I at xi into intervals I ′ and I ′′, and replace I in I by I ′, I ′′

(iii) Construct K(I ′) and K(I ′′) from K(I)
(iv) Update pointers of points in K(I ′) and K(I ′′)

15

Sorting using (Randomized) Incremental Construction

IC-Sort(S)

1: I ← {[−∞,+∞]}
2: for j ← 1 to n do
3:

4: return I
• for each point xi maintain a pointer to the interval
I ∈ I that contains xi

• for each interval I ∈ I maintain a conflict list K(I) that
stores all points contained in I

x1 x2x3x4x5 x6

I1 I2 I3

(i) Use pointer from xi to find interval I containing xi
(ii) Split I at xi into intervals I ′ and I ′′, and replace I in I by I ′, I ′′

(iii) Construct K(I ′) and K(I ′′) from K(I)
(iv) Update pointers of points in K(I ′) and K(I ′′)

Set I ← [−∞,∞] and I ← {I}, give each xj a pointer to I, set K(I)← S

16

Sorting using (Randomized) Incremental Construction

IC-Sort(S)

1: I ← {[−∞,+∞]}
2: for j ← 1 to n do
3:

4: return I

(i) Use pointer from xi to find interval I containing xi
(ii) Split I at xi into intervals I ′ and I ′′, and replace I in I by I ′, I ′′

(iii) Construct K(I ′) and K(I ′′) from K(I)
(iv) Update pointers of points in K(I ′) and K(I ′′)

Set I ← [−∞,∞] and I ← {I}, give each xj a pointer to I, set L(I)← S

16

Sorting using (Randomized) Incremental Construction

IC-Sort(S)

1: I ← {[−∞,+∞]}
2: for j ← 1 to n do
3:

4: return I

(i) Use pointer from xi to find interval I containing xi
(ii) Split I at xi into intervals I ′ and I ′′, and replace I in I by I ′, I ′′

(iii) Construct K(I ′) and K(I ′′) from K(I)
(iv) Update pointers of points in K(I ′) and K(I ′′)

Running time: O(
∑n

j=1 (size of conflict list split in j-th iteration))

Set I ← [−∞,∞] and I ← {I}, give each xj a pointer to I, set L(I)← S

16

Sorting using (Randomized) Incremental Construction

IC-Sort(S)

1: I ← {[−∞,+∞]}
2: for j ← 1 to n do
3:

4: return I

(i) Use pointer from xi to find interval I containing xi
(ii) Split I at xi into intervals I ′ and I ′′, and replace I in I by I ′, I ′′

(iii) Construct K(I ′) and K(I ′′) from K(I)
(iv) Update pointers of points in K(I ′) and K(I ′′)

Running time: O(
∑n

j=1 (size of conflict list split in j-th iteration))

• worst case: in each step j, we split a conflict list of size n− j + 1 into
lists of size 0 and n− j

Set I ← [−∞,∞] and I ← {I}, give each xj a pointer to I, set L(I)← S

16

Sorting using (Randomized) Incremental Construction

IC-Sort(S)

1: I ← {[−∞,+∞]}
2: for j ← 1 to n do
3:

4: return I

(i) Use pointer from xi to find interval I containing xi
(ii) Split I at xi into intervals I ′ and I ′′, and replace I in I by I ′, I ′′

(iii) Construct K(I ′) and K(I ′′) from K(I)
(iv) Update pointers of points in K(I ′) and K(I ′′)

Running time: O(
∑n

j=1 (size of conflict list split in j-th iteration))

• worst case: in each step j, we split a conflict list of size n− j + 1 into
lists of size 0 and n− j

running time is O(
∑n

j=1(n− j + 1)) = O(n2)

Set I ← [−∞,∞] and I ← {I}, give each xj a pointer to I, set L(I)← S

17

Sorting using (Randomized) Incremental Construction

IC-Sort(S)

1: I ← {[−∞,+∞]}
2: for j ← 1 to n do
3:

4: return I

(i) Use pointer from xi to find interval I containing xi
(ii) Split I at xi into intervals I ′ and I ′′, and replace I in I by I ′, I ′′

(iii) Construct K(I ′) and K(I ′′) from K(I)
(iv) Update pointers of points in K(I ′) and K(I ′′)

Running time: O(
∑n

j=1 (size of conflict list split in j-th iteration))

Set I ← [−∞,∞] and I ← {I}, give each xj a pointer to I, set L(I)← S

17

Sorting using (Randomized) Incremental Construction

IC-Sort(S)

1: I ← {[−∞,+∞]}
2: for j ← 1 to n do
3:

4: return I

(i) Use pointer from xi to find interval I containing xi
(ii) Split I at xi into intervals I ′ and I ′′, and replace I in I by I ′, I ′′

(iii) Construct K(I ′) and K(I ′′) from K(I)
(iv) Update pointers of points in K(I ′) and K(I ′′)

Running time: O(
∑n

j=1 (size of conflict list split in j-th iteration))

Set I ← [−∞,∞] and I ← {I}, give each xj a pointer to I, set L(I)← S

Put points xi in random order

17

Sorting using (Randomized) Incremental Construction

IC-Sort(S)

1: I ← {[−∞,+∞]}
2: for j ← 1 to n do
3:

4: return I

(i) Use pointer from xi to find interval I containing xi
(ii) Split I at xi into intervals I ′ and I ′′, and replace I in I by I ′, I ′′

(iii) Construct K(I ′) and K(I ′′) from K(I)
(iv) Update pointers of points in K(I ′) and K(I ′′)

Running time: O(
∑n

j=1 (size of conflict list split in j-th iteration))

Set I ← [−∞,∞] and I ← {I}, give each xj a pointer to I, set L(I)← S

Put points xi in random order

• expected:

apply backwards analysis

x1 x2x3x4x5 x6

I1 I2 I3

17

Sorting using (Randomized) Incremental Construction

IC-Sort(S)

1: I ← {[−∞,+∞]}
2: for j ← 1 to n do
3:

4: return I

(i) Use pointer from xi to find interval I containing xi
(ii) Split I at xi into intervals I ′ and I ′′, and replace I in I by I ′, I ′′

(iii) Construct K(I ′) and K(I ′′) from K(I)
(iv) Update pointers of points in K(I ′) and K(I ′′)

Running time: O(
∑n

j=1 (size of conflict list split in j-th iteration))

Set I ← [−∞,∞] and I ← {I}, give each xj a pointer to I, set L(I)← S

Put points xi in random order

• expected:

apply backwards analysis

x1 x2x3x4x5 x6

I1 I2 I3

at most
1 + (n− j + 1) · 2

j

17

Sorting using (Randomized) Incremental Construction

IC-Sort(S)

1: I ← {[−∞,+∞]}
2: for j ← 1 to n do
3:

4: return I

(i) Use pointer from xi to find interval I containing xi
(ii) Split I at xi into intervals I ′ and I ′′, and replace I in I by I ′, I ′′

(iii) Construct K(I ′) and K(I ′′) from K(I)
(iv) Update pointers of points in K(I ′) and K(I ′′)

Running time: O(
∑n

j=1 (size of conflict list split in j-th iteration))

Set I ← [−∞,∞] and I ← {I}, give each xj a pointer to I, set L(I)← S

Put points xi in random order

• expected:

apply backwards analysis

x1 x2x3x4x5 x6

I1 I2 I3

at most
1 + (n− j + 1) · 2

j

∑n
j=1

(
1 + 2(n−j+1)

j

)
= O

(
n+ n

∑n
j=1

1
j

)
= O(n log n)

18

Randomized Incremental Construction: The Framework

18

Randomized Incremental Construction: The Framework

• S = set of n input objects

• C(S) = set of configurations defined by S

– D(∆) ⊂ S = defining set of ∆ ∈ C(S)
size should be bounded by a fixed constant

– K(∆) ⊂ S = conflict list of ∆ ∈ C(S)
K(∆) ∩D(∆) = ∅ for all ∆

18

Randomized Incremental Construction: The Framework

• S = set of n input objects

• C(S) = set of configurations defined by S

– D(∆) ⊂ S = defining set of ∆ ∈ C(S)
size should be bounded by a fixed constant

– K(∆) ⊂ S = conflict list of ∆ ∈ C(S)
K(∆) ∩D(∆) = ∅ for all ∆

For S′ ⊆ S, define Cact(S
′) = {∆ ∈ C(S) : D(∆) ⊆ S′ and K(∆) ∩ S′ = ∅}

to be the set of configurations that are active with respect to S′

Goal: compute set Cact(S) of active configurations with respect to S

18

Randomized Incremental Construction: The Framework

• S = set of n input objects

• C(S) = set of configurations defined by S

– D(∆) ⊂ S = defining set of ∆ ∈ C(S)
size should be bounded by a fixed constant

– K(∆) ⊂ S = conflict list of ∆ ∈ C(S)
K(∆) ∩D(∆) = ∅ for all ∆

For S′ ⊆ S, define Cact(S
′) = {∆ ∈ C(S) : D(∆) ⊆ S′ and K(∆) ∩ S′ = ∅}

to be the set of configurations that are active with respect to S′

Goal: compute set Cact(S) of active configurations with respect to S

Example: sorting

C(S) :=
{
[xi, xj] : xi, xj ∈ S ∪ {−∞,+∞} and xi < xj

}x1 x2x3x4x5 x6

19

Randomized Incremental Construction: The Algorithm

RIC-Algorithm(S)

1: Compute a random permutation x1, . . . , xn of the objects in S
2: Cact ← {active configurations with respect to ∅}
3: Intitialize conflict lists of configurations ∆ ∈ Cact

4: for j ← 1 to n do
5: Remove configurations from Cact that are in conflict with xj
6: Determine new active configurations and insert them into Cact

7: Construct conflict lists of new active configurations

8: return Cact

19

Randomized Incremental Construction: The Algorithm

RIC-Algorithm(S)

1: Compute a random permutation x1, . . . , xn of the objects in S
2: Cact ← {active configurations with respect to ∅}
3: Intitialize conflict lists of configurations ∆ ∈ Cact

4: for j ← 1 to n do
5: Remove configurations from Cact that are in conflict with xj
6: Determine new active configurations and insert them into Cact

7: Construct conflict lists of new active configurations

8: return Cact

To find configurations that become inactive:

• for each xj maintain a list of all configurations ∆ ∈ Cact with xj ∈ K(∆)

• for each configuration ∆ ∈ Cact maintain its conflict list K(∆)

20

Randomized Incremental Construction: The Algorithm

RIC-Algorithm(S)

1: Compute a random permutation x1, . . . , xn of the objects in S
2: Cact ← {active configurations with respect to ∅}
3: Intitialize conflict lists of configurations ∆ ∈ Cact

4: for j ← 1 to n do
5: Remove configurations from Cact that are in conflict with xj
6: Determine new active configurations and insert them into Cact

7: Construct conflict lists of new active configurations

8: return Cact

20

Randomized Incremental Construction: The Algorithm

RIC-Algorithm(S)

1: Compute a random permutation x1, . . . , xn of the objects in S
2: Cact ← {active configurations with respect to ∅}
3: Intitialize conflict lists of configurations ∆ ∈ Cact

4: for j ← 1 to n do
5: Remove configurations from Cact that are in conflict with xj
6: Determine new active configurations and insert them into Cact

7: Construct conflict lists of new active configurations

8: return Cact

Theorem. Let Sj := {x1, . . . , xj}. Then

(i) E
[
|Cact(Sj) \ Cact(Sj−1)|

]
= O

(
E[size of Cact(Sj)]

j

)
(ii) The total size of the conflict lists of the active configurations appearing

over the course of the algorithm is O
(∑n

j=1
n
j2 · E [|Cact(Sj)|]

)

21

Exercises

1. Give an algorithm that computes (all edges of) the
convex hull of a set S of n points in the plane that
runs in O(n log n) expected time.

2. Give an algorithm that computes all k intersections in
a set S of n segments in the plane that runs in
O(n log n+ k) expected time.

21

Exercises

1. Give an algorithm that computes (all edges of) the
convex hull of a set S of n points in the plane that
runs in O(n log n) expected time.

2. Give an algorithm that computes all k intersections in
a set S of n segments in the plane that runs in
O(n log n+ k) expected time.

The framework

• S = set of n input objects

• C(S) = set of configurations defined by S

– D(∆) ⊂ S = defining set of ∆ ∈ C(S)
size should be bounded by a fixed constant

– K(∆) ⊂ S = conflict list of ∆ ∈ C(S)

• Goal: Compute Cact(S) = {∆ ∈ C(S) : D(∆) ⊆ S and K(∆) ∩ S = ∅}

22

Computing Convex Hulls with RIC

The framework

• S = set of n input objects

• C(S) = set of configurations defined by S

– D(∆) ⊂ S = defining set of ∆ ∈ C(S)
size should be bounded by a fixed constant

– K(∆) ⊂ S = conflict list of ∆ ∈ C(S)

• Goal: Compute Cact(S) = {∆ ∈ C(S) : D(∆) ⊆ S and K(∆) ∩ S = ∅}

22

Computing Convex Hulls with RIC

The framework

• S = set of n input objects

• C(S) = set of configurations defined by S

– D(∆) ⊂ S = defining set of ∆ ∈ C(S)
size should be bounded by a fixed constant

– K(∆) ⊂ S = conflict list of ∆ ∈ C(S)

• Goal: Compute Cact(S) = {∆ ∈ C(S) : D(∆) ⊆ S and K(∆) ∩ S = ∅}

the points

23

Computing Convex Hulls with RIC

The framework

• S = set of n input objects

• C(S) = set of configurations defined by S

– D(∆) ⊂ S = defining set of ∆ ∈ C(S)
size should be bounded by a fixed constant

– K(∆) ⊂ S = conflict list of ∆ ∈ C(S)

• Goal: Compute Cact(S) = {∆ ∈ C(S) : D(∆) ⊆ S and K(∆) ∩ S = ∅}

the points

directed segments

23

Computing Convex Hulls with RIC

The framework

• S = set of n input objects

• C(S) = set of configurations defined by S

– D(∆) ⊂ S = defining set of ∆ ∈ C(S)
size should be bounded by a fixed constant

– K(∆) ⊂ S = conflict list of ∆ ∈ C(S)

• Goal: Compute Cact(S) = {∆ ∈ C(S) : D(∆) ⊆ S and K(∆) ∩ S = ∅}

the points

directed segments

endpoints

23

Computing Convex Hulls with RIC

The framework

• S = set of n input objects

• C(S) = set of configurations defined by S

– D(∆) ⊂ S = defining set of ∆ ∈ C(S)
size should be bounded by a fixed constant

– K(∆) ⊂ S = conflict list of ∆ ∈ C(S)

• Goal: Compute Cact(S) = {∆ ∈ C(S) : D(∆) ⊆ S and K(∆) ∩ S = ∅}

the points

directed segments

endpoints

points left of (extended) segment

24

Computing Convex Hulls with RIC

The framework

• S = set of n input objects

• C(S) = set of configurations defined by S

– D(∆) ⊂ S = defining set of ∆ ∈ C(S)
size should be bounded by a fixed constant

– K(∆) ⊂ S = conflict list of ∆ ∈ C(S)

• Goal: Compute Cact(S) = {∆ ∈ C(S) : D(∆) ⊆ S and K(∆) ∩ S = ∅}

the points

directed segments

endpoints

points left of (extended) segment

25

Randomized Incremental Construction: The Algorithm

RIC-Algorithm(S)

1: Compute a random permutation x1, . . . , xn of the objects in S
2: Cact ← {active configurations with respect to ∅}
3: Intitialize conflict lists of configurations ∆ ∈ Cact

4: for j ← 1 to n do
5: Remove configurations from Cact that are in conflict with xj
6: Determine new active configurations and insert them into Cact

7: Construct conflict lists of new active configurations

8: return Cact

25

Randomized Incremental Construction: The Algorithm

RIC-Algorithm(S)

1: Compute a random permutation x1, . . . , xn of the objects in S
2: Cact ← {active configurations with respect to ∅}
3: Intitialize conflict lists of configurations ∆ ∈ Cact

4: for j ← 1 to n do
5: Remove configurations from Cact that are in conflict with xj
6: Determine new active configurations and insert them into Cact

7: Construct conflict lists of new active configurations

8: return Cact

25

Randomized Incremental Construction: The Algorithm

RIC-Algorithm(S)

1: Compute a random permutation x1, . . . , xn of the objects in S
2: Cact ← {active configurations with respect to ∅}
3: Intitialize conflict lists of configurations ∆ ∈ Cact

4: for j ← 1 to n do
5: Remove configurations from Cact that are in conflict with xj
6: Determine new active configurations and insert them into Cact

7: Construct conflict lists of new active configurations

8: return Cact

first three points

25

Randomized Incremental Construction: The Algorithm

RIC-Algorithm(S)

1: Compute a random permutation x1, . . . , xn of the objects in S
2: Cact ← {active configurations with respect to ∅}
3: Intitialize conflict lists of configurations ∆ ∈ Cact

4: for j ← 1 to n do
5: Remove configurations from Cact that are in conflict with xj
6: Determine new active configurations and insert them into Cact

7: Construct conflict lists of new active configurations

8: return Cact

first three points

25

Randomized Incremental Construction: The Algorithm

RIC-Algorithm(S)

1: Compute a random permutation x1, . . . , xn of the objects in S
2: Cact ← {active configurations with respect to ∅}
3: Intitialize conflict lists of configurations ∆ ∈ Cact

4: for j ← 1 to n do
5: Remove configurations from Cact that are in conflict with xj
6: Determine new active configurations and insert them into Cact

7: Construct conflict lists of new active configurations

8: return Cact

first three points

25

Randomized Incremental Construction: The Algorithm

RIC-Algorithm(S)

1: Compute a random permutation x1, . . . , xn of the objects in S
2: Cact ← {active configurations with respect to ∅}
3: Intitialize conflict lists of configurations ∆ ∈ Cact

4: for j ← 1 to n do
5: Remove configurations from Cact that are in conflict with xj
6: Determine new active configurations and insert them into Cact

7: Construct conflict lists of new active configurations

8: return Cact

first three points

• not in conflict with active configs

• no new active configs

26

Randomized Incremental Construction: The Algorithm

RIC-Algorithm(S)

1: Compute a random permutation x1, . . . , xn of the objects in S
2: Cact ← {active configurations with respect to ∅}
3: Intitialize conflict lists of configurations ∆ ∈ Cact

4: for j ← 1 to n do
5: Remove configurations from Cact that are in conflict with xj
6: Determine new active configurations and insert them into Cact

7: Construct conflict lists of new active configurations

8: return Cact

first three points

26

Randomized Incremental Construction: The Algorithm

RIC-Algorithm(S)

1: Compute a random permutation x1, . . . , xn of the objects in S
2: Cact ← {active configurations with respect to ∅}
3: Intitialize conflict lists of configurations ∆ ∈ Cact

4: for j ← 1 to n do
5: Remove configurations from Cact that are in conflict with xj
6: Determine new active configurations and insert them into Cact

7: Construct conflict lists of new active configurations

8: return Cact

first three points

26

Randomized Incremental Construction: The Algorithm

RIC-Algorithm(S)

1: Compute a random permutation x1, . . . , xn of the objects in S
2: Cact ← {active configurations with respect to ∅}
3: Intitialize conflict lists of configurations ∆ ∈ Cact

4: for j ← 1 to n do
5: Remove configurations from Cact that are in conflict with xj
6: Determine new active configurations and insert them into Cact

7: Construct conflict lists of new active configurations

8: return Cact

first three points

• in conflict with two configs

27

Randomized Incremental Construction: The Algorithm

RIC-Algorithm(S)

1: Compute a random permutation x1, . . . , xn of the objects in S
2: Cact ← {active configurations with respect to ∅}
3: Intitialize conflict lists of configurations ∆ ∈ Cact

4: for j ← 1 to n do
5: Remove configurations from Cact that are in conflict with xj
6: Determine new active configurations and insert them into Cact

7: Construct conflict lists of new active configurations

8: return Cact

first three points

• in conflict with two configs

28

Randomized Incremental Construction: The Algorithm

RIC-Algorithm(S)

1: Compute a random permutation x1, . . . , xn of the objects in S
2: Cact ← {active configurations with respect to ∅}
3: Intitialize conflict lists of configurations ∆ ∈ Cact

4: for j ← 1 to n do
5: Remove configurations from Cact that are in conflict with xj
6: Determine new active configurations and insert them into Cact

7: Construct conflict lists of new active configurations

8: return Cact

first three points

• in conflict with two configs

29

Randomized Incremental Construction: The Algorithm

RIC-Algorithm(S)

1: Compute a random permutation x1, . . . , xn of the objects in S
2: Cact ← {active configurations with respect to ∅}
3: Intitialize conflict lists of configurations ∆ ∈ Cact

4: for j ← 1 to n do
5: Remove configurations from Cact that are in conflict with xj
6: Determine new active configurations and insert them into Cact

7: Construct conflict lists of new active configurations

8: return Cact

first three points

• in conflict with two configs

• two new configs appear

30

Randomized Incremental Construction: The Algorithm

RIC-Algorithm(S)

1: Compute a random permutation x1, . . . , xn of the objects in S
2: Cact ← {active configurations with respect to ∅}
3: Intitialize conflict lists of configurations ∆ ∈ Cact

4: for j ← 1 to n do
5: Remove configurations from Cact that are in conflict with xj
6: Determine new active configurations and insert them into Cact

7: Construct conflict lists of new active configurations

8: return Cact

first three points

• in conflict with two configs

• two new configs appear

30

Randomized Incremental Construction: The Algorithm

RIC-Algorithm(S)

1: Compute a random permutation x1, . . . , xn of the objects in S
2: Cact ← {active configurations with respect to ∅}
3: Intitialize conflict lists of configurations ∆ ∈ Cact

4: for j ← 1 to n do
5: Remove configurations from Cact that are in conflict with xj
6: Determine new active configurations and insert them into Cact

7: Construct conflict lists of new active configurations

8: return Cact

first three points

conflict lists are subset of
union of old conflict lists

• in conflict with two configs

• two new configs appear

31

Randomized Incremental Construction: The Algorithm

Theorem. Let Sj := {x1, . . . , xj}. Then

(i) E
[
|Cact(Sj) \ Cact(Sj−1)|

]
= O

(
E[size of Cact(Sj)]

j

)
(ii) The total size of the conflict lists of the active configurations appearing

over the course of the algorithm is O
(∑n

j=1
n
j2 · E [|Cact(Sj)|]

)

31

Randomized Incremental Construction: The Algorithm

Theorem. Let Sj := {x1, . . . , xj}. Then

(i) E
[
|Cact(Sj) \ Cact(Sj−1)|

]
= O

(
E[size of Cact(Sj)]

j

)
(ii) The total size of the conflict lists of the active configurations appearing

over the course of the algorithm is O
(∑n

j=1
n
j2 · E [|Cact(Sj)|]

)

• |Cact(Sj)| 6 j

• total running time is linear in total size of all (dis)appearing conflict lists

31

Randomized Incremental Construction: The Algorithm

Theorem. Let Sj := {x1, . . . , xj}. Then

(i) E
[
|Cact(Sj) \ Cact(Sj−1)|

]
= O

(
E[size of Cact(Sj)]

j

)
(ii) The total size of the conflict lists of the active configurations appearing

over the course of the algorithm is O
(∑n

j=1
n
j2 · E [|Cact(Sj)|]

)

• |Cact(Sj)| 6 j

• total running time is linear in total size of all (dis)appearing conflict lists

convex-hull algorithm runs in O(n log n) time

32

Line-Segment Intersection with RIC

32

Line-Segment Intersection with RIC

The framework

• S = set of n input objects

• C(S) = set of configurations defined by S

– D(∆) ⊂ S = defining set of ∆ ∈ C(S)
size should be bounded by a fixed constant

– K(∆) ⊂ S = conflict list of ∆ ∈ C(S)

• Goal: Compute Cact(S) = {∆ ∈ C(S) : D(∆) ⊆ S and K(∆) ∩ S = ∅}

32

Line-Segment Intersection with RIC

The framework

• S = set of n input objects

• C(S) = set of configurations defined by S

– D(∆) ⊂ S = defining set of ∆ ∈ C(S)
size should be bounded by a fixed constant

– K(∆) ⊂ S = conflict list of ∆ ∈ C(S)

• Goal: Compute Cact(S) = {∆ ∈ C(S) : D(∆) ⊆ S and K(∆) ∩ S = ∅}

Configurations?

33

Line-Segment Intersection with RIC

The framework

• S = set of n input objects

• C(S) = set of configurations defined by S

– D(∆) ⊂ S = defining set of ∆ ∈ C(S)
size should be bounded by a fixed constant

– K(∆) ⊂ S = conflict list of ∆ ∈ C(S)

• Goal: Compute Cact(S) = {∆ ∈ C(S) : D(∆) ⊆ S and K(∆) ∩ S = ∅}

Configurations?

• intersection points does not work
(find new configurations?)

34

Line-Segment Intersection with RIC

The framework

• S = set of n input objects

• C(S) = set of configurations defined by S

– D(∆) ⊂ S = defining set of ∆ ∈ C(S)
size should be bounded by a fixed constant

– K(∆) ⊂ S = conflict list of ∆ ∈ C(S)

• Goal: Compute Cact(S) = {∆ ∈ C(S) : D(∆) ⊆ S and K(∆) ∩ S = ∅}

Configurations?

• intersection points does not work
(find new configurations?)

• ”subsegments” of segments does not
work (initialization?)

35

Line-Segment Intersection with RIC

The framework

• S = set of n input objects

• C(S) = set of configurations defined by S

– D(∆) ⊂ S = defining set of ∆ ∈ C(S)
size should be bounded by a fixed constant

– K(∆) ⊂ S = conflict list of ∆ ∈ C(S)

• Goal: Compute Cact(S) = {∆ ∈ C(S) : D(∆) ⊆ S and K(∆) ∩ S = ∅}

Configurations?

• intersection points does not work
(find new configurations?)

• ”subsegments” of segments does not
work (initialization?)

• construct vertical decomposition

35

Line-Segment Intersection with RIC

The framework

• S = set of n input objects

• C(S) = set of configurations defined by S

– D(∆) ⊂ S = defining set of ∆ ∈ C(S)
size should be bounded by a fixed constant

– K(∆) ⊂ S = conflict list of ∆ ∈ C(S)

• Goal: Compute Cact(S) = {∆ ∈ C(S) : D(∆) ⊆ S and K(∆) ∩ S = ∅}

Configurations?

• intersection points does not work
(find new configurations?)

• ”subsegments” of segments does not
work (initialization?)

• construct vertical decomposition

36

Course Overview

substructures in
arrangements

Davenport-
Schinzel

sequences
Voronoi

diagrams and
Delaunay

triangulations

randomized
incremental
construction

lazy
randomized
incremental
construction

applications of
upper

envelopes

the
Clarkson-Shor

technique

37

Course Overview

substructures in
arrangements

Davenport-
Schinzel

sequences
Voronoi

diagrams and
Delaunay

triangulations

randomized
incremental
construction

lazy
randomized
incremental
construction

applications of
upper

envelopes

the
Clarkson-Shor

technique

38

Terrain Reconstruction

Image: www.aurorasolar.com

39

Principia Philosiphiae (Descartes, 1664)

39

Principia Philosiphiae (Descartes, 1664)

Voronoi diagram

39

Principia Philosiphiae (Descartes, 1664)

Voronoi diagram

Georgy Voronoy
(1868-1908)

40

931

942

927

899

912

922

=⇒

Input: terrain elevation
at sample points

Back to terrain reconstruction . . .

Goal: construct continuous
terrain surface

Terrain Reconstruction from Elevation Data

41

931

942

927

899

912

922
elevation?

Terrain Reconstruction from Elevation Data

41

931

942

927

899

912

922
elevation?

Idea: use elevation of
nearest sample point

Voronoi diagram

Terrain Reconstruction from Elevation Data

41

931

942

927

899

912

922
elevation?

Idea: use elevation of
nearest sample point

Voronoi diagram

Not good: surface not continuous

Terrain Reconstruction from Elevation Data

42

Better idea: determine elevation using interpolation

Terrain Reconstruction from Elevation Data

42

triangulation

Better idea: determine elevation using interpolation

Terrain Reconstruction from Elevation Data

42

triangulation

Better idea: determine elevation using interpolation

Terrain Reconstruction from Elevation Data

42

triangulation

Better idea: determine elevation using interpolation

gives continuous surface

Terrain Reconstruction from Elevation Data

43

Which triangulation should we use?

or or . . .

Terrain Reconstruction from Elevation Data

43

Which triangulation should we use?

or or . . .

long and thin triangles are bad =⇒ try to avoid small angles

Algorithmic problem: How can we quickly compute a triangulation that
maximizes the minimum angle?

Terrain Reconstruction from Elevation Data

44

Terrain Reconstruction from Elevation Data

Voronoi diagram

44

Terrain Reconstruction from Elevation Data

connect points whose
cells are neighbors

Voronoi diagram

44

Terrain Reconstruction from Elevation Data

connect points whose
cells are neighbors

Voronoi diagram

45

Voronoi diagram

Terrain Reconstruction from Elevation Data

connect points whose
cells are neighbors

45

Voronoi diagram

Terrain Reconstruction from Elevation Data

connect points whose
cells are neighbors

45

Voronoi diagram

Terrain Reconstruction from Elevation Data

connect points whose
cells are neighbors

45

Voronoi diagram

Delaunay triangulation:

triangulation that maximizes
the minimum angle!

Terrain Reconstruction from Elevation Data

connect points whose
cells are neighbors

Boris Delaunay
(1890 -1980)

46

Computing the Delaunay Triangulation

47

∆(p, q, r) is in Delaunay triangulation

⇐⇒
Circle(p, q, r) contains no other point

Computing the Delaunay Triangulation

47

∆(p, q, r) is in Delaunay triangulation

⇐⇒
Circle(p, q, r) contains no other point

Computing the Delaunay Triangulation

47

∆(p, q, r) is in Delaunay triangulation

⇐⇒
Circle(p, q, r) contains no other point

Computing the Delaunay Triangulation

47

∆(p, q, r) is in Delaunay triangulation

⇐⇒
Circle(p, q, r) contains no other point

Computing the Delaunay Triangulation

47

∆(p, q, r) is in Delaunay triangulation

⇐⇒
Circle(p, q, r) contains no other point

Computing the Delaunay Triangulation

47

∆(p, q, r) is in Delaunay triangulation

⇐⇒
Circle(p, q, r) contains no other point

Computing the Delaunay Triangulation

Delaunay-Algorithm(S)

1: T ← ∅
2: for every triple of points p, q, r from S do
3: if all other points from S lie outside Circle(p, q, r) then
4: Add ∆(p, q, r) to T
5: return T

47

∆(p, q, r) is in Delaunay triangulation

⇐⇒
Circle(p, q, r) contains no other point

Computing the Delaunay Triangulation

Delaunay-Algorithm(S)

1: T ← ∅
2: for every triple of points p, q, r from S do
3: if all other points from S lie outside Circle(p, q, r) then
4: Add ∆(p, q, r) to T
5: return T Running time:

47

∆(p, q, r) is in Delaunay triangulation

⇐⇒
Circle(p, q, r) contains no other point

Computing the Delaunay Triangulation

Delaunay-Algorithm(S)

1: T ← ∅
2: for every triple of points p, q, r from S do
3: if all other points from S lie outside Circle(p, q, r) then
4: Add ∆(p, q, r) to T
5: return T Running time: O(n4)

48

Computing the Delaunay Triangulation by RIC

Exercise

Apply the RIC framework to develop a randomized algorithm to compute the
Delaunay triangulation, and analyze its running time.

Fact: The number of triangles in the Delaunay triangulation of a set S of n points

in the plane is at most 2n− 5.

48

Computing the Delaunay Triangulation by RIC

Exercise

Apply the RIC framework to develop a randomized algorithm to compute the
Delaunay triangulation, and analyze its running time.

Fact: The number of triangles in the Delaunay triangulation of a set S of n points

in the plane is at most 2n− 5.

The framework

• S = set of n input objects

• C(S) = set of configurations defined by S

– D(∆) ⊂ S = defining set of ∆ ∈ C(S)
size bounded by fixed constant

– K(∆) ⊂ S = conflict list of ∆ ∈ C(S)

• Goal: Compute Cact(S) =
{∆ ∈ C(S) : D(∆) ⊆ S and K(∆) ∩ S = ∅}

49

Computing the Delaunay Triangulation by RIC

• S = set of n input objects

• C(S) = set of configurations defined by S

– D(∆) ⊂ S = defining set of ∆ ∈ C(S)
size bounded by fixed constant

– K(∆) ⊂ S = conflict list of ∆ ∈ C(S)

• Goal: Compute Cact(S) =
{∆ ∈ C(S) : D(∆) ⊆ S and K(∆) ∩ S = ∅}

49

Computing the Delaunay Triangulation by RIC

• S = set of n input objects

• C(S) = set of configurations defined by S

– D(∆) ⊂ S = defining set of ∆ ∈ C(S)
size bounded by fixed constant

– K(∆) ⊂ S = conflict list of ∆ ∈ C(S)

• Goal: Compute Cact(S) =
{∆ ∈ C(S) : D(∆) ⊆ S and K(∆) ∩ S = ∅}

input points

49

Computing the Delaunay Triangulation by RIC

• S = set of n input objects

• C(S) = set of configurations defined by S

– D(∆) ⊂ S = defining set of ∆ ∈ C(S)
size bounded by fixed constant

– K(∆) ⊂ S = conflict list of ∆ ∈ C(S)

• Goal: Compute Cact(S) =
{∆ ∈ C(S) : D(∆) ⊆ S and K(∆) ∩ S = ∅}

input points

all possible triangles

49

Computing the Delaunay Triangulation by RIC

• S = set of n input objects

• C(S) = set of configurations defined by S

– D(∆) ⊂ S = defining set of ∆ ∈ C(S)
size bounded by fixed constant

– K(∆) ⊂ S = conflict list of ∆ ∈ C(S)

• Goal: Compute Cact(S) =
{∆ ∈ C(S) : D(∆) ⊆ S and K(∆) ∩ S = ∅}

input points

all possible triangles

49

Computing the Delaunay Triangulation by RIC

• S = set of n input objects

• C(S) = set of configurations defined by S

– D(∆) ⊂ S = defining set of ∆ ∈ C(S)
size bounded by fixed constant

– K(∆) ⊂ S = conflict list of ∆ ∈ C(S)

• Goal: Compute Cact(S) =
{∆ ∈ C(S) : D(∆) ⊆ S and K(∆) ∩ S = ∅}

all points contained in
circumcircle of ∆

input points

all possible triangles

50

Computing the Delaunay Triangulation by RIC

RIC-Delaunay(S)

1: Compute a random permutation x1, . . . , xn of the objects in S.
2: Cact ← {active configurations with respect to ∅}
3: Intitialize conflict lists of configurations ∆ ∈ Cact

4: for j ← 1 to n do
5: Remove all configurations from Cact that become inactive
6: Determine new active configurations and insert them into Cact

7: Construct conflict lists of new active configurations

8: return Cact

50

Computing the Delaunay Triangulation by RIC

RIC-Delaunay(S)

1: Compute a random permutation x1, . . . , xn of the objects in S.
2: Cact ← {active configurations with respect to ∅}
3: Intitialize conflict lists of configurations ∆ ∈ Cact

4: for j ← 1 to n do
5: Remove all configurations from Cact that become inactive
6: Determine new active configurations and insert them into Cact

7: Construct conflict lists of new active configurations

8: return Cact

51

Computing the Delaunay Triangulation by RIC

RIC-Delaunay(S)

1: Compute a random permutation x1, . . . , xn of the objects in S.
2: Cact ← {active configurations with respect to ∅}
3: Intitialize conflict lists of configurations ∆ ∈ Cact

4: for j ← 1 to n do
5: Remove all configurations from Cact that become inactive
6: Determine new active configurations and insert them into Cact

7: Construct conflict lists of new active configurations

8: return Cact

51

Computing the Delaunay Triangulation by RIC

RIC-Delaunay(S)

1: Compute a random permutation x1, . . . , xn of the objects in S.
2: Cact ← {active configurations with respect to ∅}
3: Intitialize conflict lists of configurations ∆ ∈ Cact

4: for j ← 1 to n do
5: Remove all configurations from Cact that become inactive
6: Determine new active configurations and insert them into Cact

7: Construct conflict lists of new active configurations

8: return Cact

52

Computing the Delaunay Triangulation by RIC

RIC-Delaunay(S)

1: Compute a random permutation x1, . . . , xn of the objects in S.
2: Cact ← {active configurations with respect to ∅}
3: Intitialize conflict lists of configurations ∆ ∈ Cact

4: for j ← 1 to n do
5: Remove all configurations from Cact that become inactive
6: Determine new active configurations and insert them into Cact

7: Construct conflict lists of new active configurations

8: return Cact

52

Computing the Delaunay Triangulation by RIC

RIC-Delaunay(S)

1: Compute a random permutation x1, . . . , xn of the objects in S.
2: Cact ← {active configurations with respect to ∅}
3: Intitialize conflict lists of configurations ∆ ∈ Cact

4: for j ← 1 to n do
5: Remove all configurations from Cact that become inactive
6: Determine new active configurations and insert them into Cact

7: Construct conflict lists of new active configurations

8: return Cact

52

Computing the Delaunay Triangulation by RIC

RIC-Delaunay(S)

1: Compute a random permutation x1, . . . , xn of the objects in S.
2: Cact ← {active configurations with respect to ∅}
3: Intitialize conflict lists of configurations ∆ ∈ Cact

4: for j ← 1 to n do
5: Remove all configurations from Cact that become inactive
6: Determine new active configurations and insert them into Cact

7: Construct conflict lists of new active configurations

8: return Cact

52

Computing the Delaunay Triangulation by RIC

RIC-Delaunay(S)

1: Compute a random permutation x1, . . . , xn of the objects in S.
2: Cact ← {active configurations with respect to ∅}
3: Intitialize conflict lists of configurations ∆ ∈ Cact

4: for j ← 1 to n do
5: Remove all configurations from Cact that become inactive
6: Determine new active configurations and insert them into Cact

7: Construct conflict lists of new active configurations

8: return Cact

53

Computing the Delaunay Triangulation by RIC

RIC-Delaunay(S)

1: Compute a random permutation x1, . . . , xn of the objects in S.
2: Cact ← {active configurations with respect to ∅}
3: Intitialize conflict lists of configurations ∆ ∈ Cact

4: for j ← 1 to n do
5: Remove all configurations from Cact that become inactive
6: Determine new active configurations and insert them into Cact

7: Construct conflict lists of new active configurations

8: return Cact

53

Computing the Delaunay Triangulation by RIC

RIC-Delaunay(S)

1: Compute a random permutation x1, . . . , xn of the objects in S.
2: Cact ← {active configurations with respect to ∅}
3: Intitialize conflict lists of configurations ∆ ∈ Cact

4: for j ← 1 to n do
5: Remove all configurations from Cact that become inactive
6: Determine new active configurations and insert them into Cact

7: Construct conflict lists of new active configurations

8: return Cact

54

Computing the Delaunay Triangulation by RIC

RIC-Delaunay(S)

1: Compute a random permutation x1, . . . , xn of the objects in S.
2: Cact ← {active configurations with respect to ∅}
3: Intitialize conflict lists of configurations ∆ ∈ Cact

4: for j ← 1 to n do
5: Remove all configurations from Cact that become inactive
6: Determine new active configurations and insert them into Cact

7: Construct conflict lists of new active configurations

8: return Cact

54

Computing the Delaunay Triangulation by RIC

RIC-Delaunay(S)

1: Compute a random permutation x1, . . . , xn of the objects in S.
2: Cact ← {active configurations with respect to ∅}
3: Intitialize conflict lists of configurations ∆ ∈ Cact

4: for j ← 1 to n do
5: Remove all configurations from Cact that become inactive
6: Determine new active configurations and insert them into Cact

7: Construct conflict lists of new active configurations

8: return Cact

55

Computing the Delaunay Triangulation by RIC

RIC-Delaunay(S)

1: Compute a random permutation x1, . . . , xn of the objects in S.
2: Cact ← {active configurations with respect to ∅}
3: Intitialize conflict lists of configurations ∆ ∈ Cact

4: for j ← 1 to n do
5: Remove all configurations from Cact that become inactive
6: Determine new active configurations and insert them into Cact

7: Construct conflict lists of new active configurations

8: return Cact

55

Computing the Delaunay Triangulation by RIC

RIC-Delaunay(S)

1: Compute a random permutation x1, . . . , xn of the objects in S.
2: Cact ← {active configurations with respect to ∅}
3: Intitialize conflict lists of configurations ∆ ∈ Cact

4: for j ← 1 to n do
5: Remove all configurations from Cact that become inactive
6: Determine new active configurations and insert them into Cact

7: Construct conflict lists of new active configurations

8: return Cact

Observation: new edges
go from inserted point to
points on hole boundary

55

Computing the Delaunay Triangulation by RIC

RIC-Delaunay(S)

1: Compute a random permutation x1, . . . , xn of the objects in S.
2: Cact ← {active configurations with respect to ∅}
3: Intitialize conflict lists of configurations ∆ ∈ Cact

4: for j ← 1 to n do
5: Remove all configurations from Cact that become inactive
6: Determine new active configurations and insert them into Cact

7: Construct conflict lists of new active configurations

8: return Cact

Observation: new edges
go from inserted point to
points on hole boundary

55

Computing the Delaunay Triangulation by RIC

RIC-Delaunay(S)

1: Compute a random permutation x1, . . . , xn of the objects in S.
2: Cact ← {active configurations with respect to ∅}
3: Intitialize conflict lists of configurations ∆ ∈ Cact

4: for j ← 1 to n do
5: Remove all configurations from Cact that become inactive
6: Determine new active configurations and insert them into Cact

7: Construct conflict lists of new active configurations

8: return Cact

Observation: new edges
go from inserted point to
points on hole boundary

takes most time . . .

56

Analysis of the Algorithm

Theorem. Let Sj := {x1, . . . , xj}. Then

(i) E
[
|Cact(Sj) \ Cact(Sj−1)|

]
= O

(
E[size of Cact(Sj)]

j

)
(ii) The total size of the conflict lists of the active configurations appearing

over the course of the algorithm is O
(∑n

j=1
n
j2 · E [|Cact(Sj)|]

)

56

Analysis of the Algorithm

Theorem. Let Sj := {x1, . . . , xj}. Then

(i) E
[
|Cact(Sj) \ Cact(Sj−1)|

]
= O

(
E[size of Cact(Sj)]

j

)
(ii) The total size of the conflict lists of the active configurations appearing

over the course of the algorithm is O
(∑n

j=1
n
j2 · E [|Cact(Sj)|]

)

Delaunay triangulation in the plane:

size of Cact(Sj) = #(triangles of Delaunay triangulation of j points) = O(j)

=⇒ total size of all conflict lists = O(n log n)

56

Analysis of the Algorithm

Theorem. Let Sj := {x1, . . . , xj}. Then

(i) E
[
|Cact(Sj) \ Cact(Sj−1)|

]
= O

(
E[size of Cact(Sj)]

j

)
(ii) The total size of the conflict lists of the active configurations appearing

over the course of the algorithm is O
(∑n

j=1
n
j2 · E [|Cact(Sj)|]

)

Delaunay triangulation in the plane:

size of Cact(Sj) = #(triangles of Delaunay triangulation of j points) = O(j)

Theorem. The Delaunay triangulation of a set of n points in the plane can
be computed in O(n log n) expected time, using RIC.

=⇒ total size of all conflict lists = O(n log n)

57

Voronoi Diagrams and Delaunay Triangulations

Fun Facts and Application

58

Voronoi Diagrams and Delaunay Triangulations: Fun Facts

dilation (= stretch factor = spanning ratio) of Delaunay triangulation
is at most 1.998.

58

Voronoi Diagrams and Delaunay Triangulations: Fun Facts

dilation (= stretch factor = spanning ratio) of Delaunay triangulation
is at most 1.998.

59

Voronoi Diagrams and Delaunay Triangulations: Fun Facts

Voronoi diagram in Rd ≡ half-space intersection in Rd+1 ≈ convex hull in Rd+1

59

Voronoi Diagrams and Delaunay Triangulations: Fun Facts

Voronoi diagram in Rd ≡ half-space intersection in Rd+1 ≈ convex hull in Rd+1

y = x2

60

Voronoi Diagrams and Delaunay Triangulations: Fun Facts

Voronoi diagram in Rd ≡ half-space intersection in Rd+1 ≈ convex hull in Rd+1

60

Voronoi Diagrams and Delaunay Triangulations: Fun Facts

Voronoi diagram in Rd ≡ half-space intersection in Rd+1 ≈ convex hull in Rd+1

map line y = ax+ b to point (a,−b)

y = x

y = 2

y = −x+ 2

y = 1
2x+ 1

2
(1

2 ,−
1
2)

(1, 0)

(0,−2)(−1,−2)

upper envelope ≡ lower hulll

=⇒

61

Delaunay Triangulations: Application to CF-Coloring

for q ∈ R2 define D(q) := { disks containing q }

Conflict-free coloring: coloring of disks such that, for any q with S(q) 6= ∅,
the set D(q) has a disk with a unique color

61

Delaunay Triangulations: Application to CF-Coloring

for q ∈ R2 define D(q) := { disks containing q }

Conflict-free coloring: coloring of disks such that, for any q with S(q) 6= ∅,
the set D(q) has a disk with a unique color

62

Delaunay Triangulations: Application to CF-Coloring

for q ∈ R2 define D(q) := { disks containing q }

Conflict-free coloring: coloring of disks such that, for any q with S(q) 6= ∅,
the set D(q) has a disk with a unique color

63

Delaunay Triangulations: Application to CF-Coloring

Theorem. For any set of n unit disks, there exists a conflict-free
coloring with O(log n) colors, and this is best possible.

64

Delaunay Triangulations: Application to CF-Coloring

Invert problem: color disk centers with respect to unit disks as ranges

64

Delaunay Triangulations: Application to CF-Coloring

Invert problem: color disk centers with respect to unit disks as ranges

=⇒

65

Delaunay Triangulations: Application to CF-Coloring

The coloring algorithm

Initally P = {all points} and i = 1

1. I := max independent set in Delaunay triangulation

2. Give all points in I color i

3. Set i := i+ 1 and recurse on P \ I

65

Delaunay Triangulations: Application to CF-Coloring

The coloring algorithm

Initally P = {all points} and i = 1

1. I := max independent set in Delaunay triangulation

2. Give all points in I color i

3. Set i := i+ 1 and recurse on P \ I

(p, q) is edge in DT iff there is
a circle containing only p, q

66

Delaunay Triangulations: Application to CF-Coloring

The coloring algorithm

Initally P = {all points} and i = 1

1. I := max independent set in Delaunay triangulation

2. Give all points in I color i

3. Set i := i+ 1 and recurse on P \ I

66

Delaunay Triangulations: Application to CF-Coloring

The coloring algorithm

Initally P = {all points} and i = 1

1. I := max independent set in Delaunay triangulation

2. Give all points in I color i

3. Set i := i+ 1 and recurse on P \ I

67

Delaunay Triangulations: Application to CF-Coloring

The coloring algorithm

Initally P = {all points} and i = 1

1. I := max independent set in Delaunay triangulation

2. Give all points in I color i

3. Set i := i+ 1 and recurse on P \ I

67

Delaunay Triangulations: Application to CF-Coloring

The coloring algorithm

Initally P = {all points} and i = 1

1. I := max independent set in Delaunay triangulation

2. Give all points in I color i

3. Set i := i+ 1 and recurse on P \ I

67

Delaunay Triangulations: Application to CF-Coloring

The coloring algorithm

Initally P = {all points} and i = 1

1. I := max independent set in Delaunay triangulation

2. Give all points in I color i

3. Set i := i+ 1 and recurse on P \ I

68

Delaunay Triangulations: Application to CF-Coloring

The coloring algorithm

Initally P = {all points} and i = 1

1. I := max independent set in Delaunay triangulation

2. Give all points in I color i

3. Set i := i+ 1 and recurse on P \ I

68

Delaunay Triangulations: Application to CF-Coloring

The coloring algorithm

Initally P = {all points} and i = 1

1. I := max independent set in Delaunay triangulation

2. Give all points in I color i

3. Set i := i+ 1 and recurse on P \ I

68

Delaunay Triangulations: Application to CF-Coloring

The coloring algorithm

Initally P = {all points} and i = 1

1. I := max independent set in Delaunay triangulation

2. Give all points in I color i

3. Set i := i+ 1 and recurse on P \ I

69

Delaunay Triangulations: Application to CF-Coloring

The coloring algorithm

Initally P = {all points} and i = 1

1. I := max independent set in Delaunay triangulation

2. Give all points in I color i

3. Set i := i+ 1 and recurse on P \ I

and so on . . .

70

Delaunay Triangulations: Application to CF-Coloring

Claim. Number of colors = O(log n).

70

Delaunay Triangulations: Application to CF-Coloring

• Four Color Theorem =⇒ size max indep set > 1
4n

Claim. Number of colors = O(log n).

70

Delaunay Triangulations: Application to CF-Coloring

• C(n) := number of colors

C(n) 6 1 + C
(

3
4n
)

=⇒ C(n) = O(log n)

Claim. Number of colors = O(log n).

• Four Color Theorem =⇒ size max indep set > 1
4n

71

Delaunay Triangulations: Application to CF-Coloring

any non-empty disk must have point with unique color

Claim. Coloring is conflict-free.

72

Delaunay Triangulations: Application to CF-Coloring

any non-empty disk must have point with unique color

• disk has single point with color 1

Claim. Coloring is conflict-free.

73

Delaunay Triangulations: Application to CF-Coloring

any non-empty disk must have point with unique color

• disk has single point with color 1

• disk has no point with color 1: induction

Claim. Coloring is conflict-free.

74

Delaunay Triangulations: Application to CF-Coloring

any non-empty disk must have point with unique color

• disk has single point with color 1

• disk has no point with color 1

• disk has > 2 points with color 1
disk must contain other points =⇒ induction

Claim. Coloring is conflict-free.

74

Delaunay Triangulations: Application to CF-Coloring

any non-empty disk must have point with unique color

• disk has single point with color 1

• disk has no point with color 1

• disk has > 2 points with color 1
disk must contain other points =⇒ induction

Claim. Coloring is conflict-free.

75

Course Overview

substructures in
arrangements

Davenport-
Schinzel

sequences
Voronoi

diagrams and
Delaunay

triangulations

randomized
incremental
construction

lazy
randomized
incremental
construction

applications of
upper

envelopes

the
Clarkson-Shor

technique

76

Course Overview

substructures in
arrangements

Davenport-
Schinzel

sequences
Voronoi

diagrams and
Delaunay

triangulations

randomized
incremental
construction

lazy
randomized
incremental
construction

applications of
upper

envelopes

the
Clarkson-Shor

technique

77

Davenport-Schinzel sequences

Harold Davenport
(1907–1965)

Andrzej Schinzel
(1937–2021)

A combinatorial problem

Consider a sequence over the alphabet
{1, . . . , n} such that

• . . . i i . . . does not appear

• . . . i . . . j . . . i . . . j . . . does not appear

How long can such a sequence be?
American Journal of Mathematics 87:684–694 (1965)

s+ 2 times

78

Davenport-Schinzel sequences

Davenport-Schinzel sequence of order s (over alphabet of size n) is sequence
that does not contain the following:

• . . . i i . . . no two consecutive symbols are the same

• . . . i . . . j . . . i . . . j . . . no alternating subsequence of length s+ 2

s+ 2 times

Example (n = 9, s = 2)

• 6, 4, 5, 6, 1, 2, 2, 7, 3

• 2, 5, 1, 2, 7, 8, 7, 1, 3, 4

• 3, 6, 4, 2, 5, 1, 5, 9, 8, 9, 7

78

Davenport-Schinzel sequences

Davenport-Schinzel sequence of order s (over alphabet of size n) is sequence
that does not contain the following:

• . . . i i . . . no two consecutive symbols are the same

• . . . i . . . j . . . i . . . j . . . no alternating subsequence of length s+ 2

s+ 2 times

Example (n = 9, s = 2)

• 6, 4, 5, 6, 1, 2, 2, 7, 3

• 2, 5, 1, 2, 7, 8, 7, 1, 3, 4

• 3, 6, 4, 2, 5, 1, 5, 9, 8, 9, 7

78

Davenport-Schinzel sequences

Davenport-Schinzel sequence of order s (over alphabet of size n) is sequence
that does not contain the following:

• . . . i i . . . no two consecutive symbols are the same

• . . . i . . . j . . . i . . . j . . . no alternating subsequence of length s+ 2

s+ 2 times

Example (n = 9, s = 2)

• 6, 4, 5, 6, 1, 2, 2, 7, 3

• 2, 5, 1, 2, 7, 8, 7, 1, 3, 4

• 3, 6, 4, 2, 5, 1, 5, 9, 8, 9, 7

78

Davenport-Schinzel sequences

Davenport-Schinzel sequence of order s (over alphabet of size n) is sequence
that does not contain the following:

• . . . i i . . . no two consecutive symbols are the same

• . . . i . . . j . . . i . . . j . . . no alternating subsequence of length s+ 2

s+ 2 times

Example (n = 9, s = 2)

• 6, 4, 5, 6, 1, 2, 2, 7, 3

• 2, 5, 1, 2, 7, 8, 7, 1, 3, 4

• 3, 6, 4, 2, 5, 1, 5, 9, 8, 9, 7

78

Davenport-Schinzel sequences

Davenport-Schinzel sequence of order s (over alphabet of size n) is sequence
that does not contain the following:

• . . . i i . . . no two consecutive symbols are the same

• . . . i . . . j . . . i . . . j . . . no alternating subsequence of length s+ 2

s+ 2 times

Example (n = 9, s = 2)

• 6, 4, 5, 6, 1, 2, 2, 7, 3

• 2, 5, 1, 2, 7, 8, 7, 1, 3, 4

• 3, 6, 4, 2, 5, 1, 5, 9, 8, 9, 7

Exercise: Determine the maximal possible length of a DS-sequence of
order s as a function of n, for s = 1, s = 2, s = 3, . . .

79

Davenport-Schinzel sequences

Davenport-Schinzel sequence of order s (over alphabet of size n) is sequence
that does not contain the following:

• . . . i i . . . no two consecutive symbols are the same

• . . . i . . . j . . . i . . . j . . . no alternating subsequence of length s+ 2

s+ 2 times

79

Davenport-Schinzel sequences

Davenport-Schinzel sequence of order s (over alphabet of size n) is sequence
that does not contain the following:

• . . . i i . . . no two consecutive symbols are the same

• . . . i . . . j . . . i . . . j . . . no alternating subsequence of length s+ 2

s+ 2 times

DSs(n) := maximum length of DS-sequence of order s on n symbols

• s = 1:

• s = 2:

79

Davenport-Schinzel sequences

Davenport-Schinzel sequence of order s (over alphabet of size n) is sequence
that does not contain the following:

• . . . i i . . . no two consecutive symbols are the same

• . . . i . . . j . . . i . . . j . . . no alternating subsequence of length s+ 2

s+ 2 times

DSs(n) := maximum length of DS-sequence of order s on n symbols

• s = 1:

• s = 2:

=⇒ DS1(n) = npossible sequence: 1, 2, 3, . . . , n
no symbol can appear twice

79

Davenport-Schinzel sequences

Davenport-Schinzel sequence of order s (over alphabet of size n) is sequence
that does not contain the following:

• . . . i i . . . no two consecutive symbols are the same

• . . . i . . . j . . . i . . . j . . . no alternating subsequence of length s+ 2

s+ 2 times

DSs(n) := maximum length of DS-sequence of order s on n symbols

• s = 1:

• s = 2:

=⇒ DS1(n) = npossible sequence: 1, 2, 3, . . . , n
no symbol can appear twice

possible sequence 1, 2, . . . , n− 1, n, n− 1, . . . , 2, 1

=⇒ DS2(n) > 2n− 1

Proof by induction, remove symbol whose first occurrence is last,
plus at most one adjacent symbol:

DS2(n) 6 DS(n− 1) + 2 =⇒ DS2(n) 6 2n− 1

80

Davenport-Schinzel sequences

Theorem. DSs(n) is near-linear for any constant s. In particular,

• DS1(n) = n

• DS2(n) = 2n− 1

• DS3(n) = Θ(nα(n))

• DSs(n) = o(n log∗ n) for any fixed constant s

where α(n) is the inverse Ackermann function

α(n) is inverse of Ackermann function A(n), where A(n) = An(n) with:

A1(n) = 2n for n > 1
Ak(1) = 2 for k > 1
Ak(n) = Ak−1(Ak(n− 1)) for k > 2 and n > 2

A(1) = 2, A(2) = 4, A(3) = 16, A(4) = tower of 65536 2’s

α(n) grows slower than super-super-super-super-super-slowly . . .

81

Course Overview

substructures in
arrangements

Davenport-
Schinzel

sequences
Voronoi

diagrams and
Delaunay

triangulations

randomized
incremental
construction

lazy
randomized
incremental
construction

applications of
upper

envelopes

the
Clarkson-Shor

technique

82

Course Overview

substructures in
arrangements

Davenport-
Schinzel

sequences
Voronoi

diagrams and
Delaunay

triangulations

randomized
incremental
construction

lazy
randomized
incremental
construction

applications of
upper

envelopes

the
Clarkson-Shor

technique

83

Robot Motion Planning

t

s

83

Robot Motion Planning

t

1. Transform problem to motion-planning problem for a point-shaped robot

s

84

Robot Motion Planning

t

1. Transform problem to motion-planning problem for a point-shaped robot

s

84

Robot Motion Planning

t

1. Transform problem to motion-planning problem for a point-shaped robot

s

85

Robot Motion Planning

t

1. Transform problem to motion-planning problem for a point-shaped robot
by expanding each obstacle. (Expanded obstacles can intersect!)

s

86

Robot Motion Planning

t

1. Transform problem to motion-planning problem for a point-shaped robot
by expanding each obstacle. (Expanded obstacles can intersect!)

2. Decompose free space into “quadrilaterals”

s

87

Robot Motion Planning

t

1. Transform problem to motion-planning problem for a point-shaped robot
by expanding each obstacle. (Expanded obstacles can intersect!)

2. Decompose free space into “quadrilaterals”

3. Construct motion graph G and compute path from s to t in G

s

88

(Substructures in) Arrangements

reachable region of the robot
=

single cell in arrangement induced by a set S of n curves in R2

for other types of robots: in Rd, where d = #(degrees of freedom)

89

(Substructures in) Arrangements

S: set of n lines / segments / curves / etc in R2

A(S) = arrangement induced by S
= partitioning of R2 into faces, edges, and vertices induced by S

combinatorial complexity of A(S) = total number of vertices, edges, faces

edge

vertex

face (cell)

90

(Substructures in) Arrangements

upper envelope

zone k-level

single cell

91

Theorem. Let S be a set of n simple curves such that any two curves
intersect at most s times, where S is a fixed constant. Then the
complexity of the full arrangement A(S) is O(n2).

The Complexity of (Substructures in) Arrangements

92

Proof.

Theorem. Let S be a set of n simple curves such that any two curves
intersect at most s times, where S is a fixed constant. Then the
complexity of the full arrangement A(S) is O(n2).

Assume curves are finite.

• number of vertices

• number of edges

• number of faces

The Complexity of (Substructures in) Arrangements

92

Proof.

Theorem. Let S be a set of n simple curves such that any two curves
intersect at most s times, where S is a fixed constant. Then the
complexity of the full arrangement A(S) is O(n2).

Assume curves are finite.

• number of vertices

• number of edges

• number of faces

|V | 6 2n+ s ·
(
n
2

)
= O(n2)

The Complexity of (Substructures in) Arrangements

92

Proof.

Theorem. Let S be a set of n simple curves such that any two curves
intersect at most s times, where S is a fixed constant. Then the
complexity of the full arrangement A(S) is O(n2).

Assume curves are finite.

• number of vertices

• number of edges

• number of faces

|V | 6 2n+ s ·
(
n
2

)
= O(n2)

|E| 6 n · (s(n− 1) + 1) = O(n2)

The Complexity of (Substructures in) Arrangements

92

Proof.

Theorem. Let S be a set of n simple curves such that any two curves
intersect at most s times, where S is a fixed constant. Then the
complexity of the full arrangement A(S) is O(n2).

Assume curves are finite.

• number of vertices

• number of edges

• number of faces

|V | 6 2n+ s ·
(
n
2

)
= O(n2)

|E| 6 n · (s(n− 1) + 1) = O(n2)

Euler’s formula:

|V | − |E|+ |F | = 2

The Complexity of (Substructures in) Arrangements

93

The Complexity of (Substructures in) Arrangements

Theorem. Let S be a set of n infinite x-monotone curves such that any
two curves intersect at most s times. Then the maximum complexity of
the upper envelope of S is O(DSs(n)).

94

The Complexity of (Substructures in) Arrangements

Theorem. Let S be a set of n infinite x-monotone curves such that any
two curves intersect at most s times. Then the maximum complexity of
the upper envelope of S is O(DSs(n)).

Proof.

1

2

3

4

94

The Complexity of (Substructures in) Arrangements

Theorem. Let S be a set of n infinite x-monotone curves such that any
two curves intersect at most s times. Then the maximum complexity of
the upper envelope of S is O(DSs(n)).

Proof.

1

2

3

4

1 12 2

3
4

1

94

The Complexity of (Substructures in) Arrangements

Theorem. Let S be a set of n infinite x-monotone curves such that any
two curves intersect at most s times. Then the maximum complexity of
the upper envelope of S is O(DSs(n)).

Proof.

1

2

3

4

1 12 2

3
4

1

alternating sequence of length t
implies t− 1 intersections

i j i

94

The Complexity of (Substructures in) Arrangements

Theorem. Let S be a set of n infinite x-monotone curves such that any
two curves intersect at most s times. Then the maximum complexity of
the upper envelope of S is O(DSs(n)).

we cannot have alternating
sequence of length s+ 2

=⇒ DS(n, s)-sequence

Proof.

1

2

3

4

1 12 2

3
4

1

alternating sequence of length t
implies t− 1 intersections

i j i

95

The Complexity of (Substructures in) Arrangements

Theorem. Let S be a set of n x-monotone curves such that any two
curves intersect at most s times. Then the maximum complexity of the
upper envelope of S is O(DSs+2(n)).

95

The Complexity of (Substructures in) Arrangements

Theorem. Let S be a set of n x-monotone curves such that any two
curves intersect at most s times. Then the maximum complexity of the
upper envelope of S is O(DSs+2(n)).

Proof.

95

The Complexity of (Substructures in) Arrangements

Theorem. Let S be a set of n x-monotone curves such that any two
curves intersect at most s times. Then the maximum complexity of the
upper envelope of S is O(DSs+2(n)).

Proof.

alternating sequence of length t
implies t− 1 intersections

i j ji

t− 3

95

The Complexity of (Substructures in) Arrangements

Theorem. Let S be a set of n x-monotone curves such that any two
curves intersect at most s times. Then the maximum complexity of the
upper envelope of S is O(DSs+2(n)).

Proof.

alternating sequence of length t
implies t− 1 intersections

i j ji

t− 3
we cannot have alternating
sequence of length s+ 4

=⇒ DS(n, s+ 2)-sequence

96

Theorem. Let S be a set of n curves in the plane such that any two
curves intersect at most s times. Then the maximum complexity of a
single cell of A(S) is O(DSs+2(n)).

The Complexity of (Substructures in) Arrangements

97

Course Overview

substructures in
arrangements

Davenport-
Schinzel

sequences
Voronoi

diagrams and
Delaunay

triangulations

randomized
incremental
construction

lazy
randomized
incremental
construction

applications of
upper

envelopes

the
Clarkson-Shor

technique

98

Course Overview

substructures in
arrangements

Davenport-
Schinzel

sequences
Voronoi

diagrams and
Delaunay

triangulations

randomized
incremental
construction

lazy
randomized
incremental
construction

applications of
upper

envelopes

the
Clarkson-Shor

technique

99

Computing a single cell with RIC?

Input: Set S of n segments in the plane, and a point p

Goal: Compute the face of A(S) containing p

The RIC framework

• S = set of n input objects

• C(S) = set of configurations defined by S

– D(∆) ⊂ S = defining set of ∆ ∈ C(S)
size bounded by fixed constant

– K(∆) ⊂ S = conflict list of ∆ ∈ C(S)

• Goal: Compute Cact(S) =
{∆ ∈ C(S) : D(∆) ⊆ S and K(∆) ∩ S = ∅}

p

99

Computing a single cell with RIC?

Input: Set S of n segments in the plane, and a point p

Goal: Compute the face of A(S) containing p

The RIC framework

• S = set of n input objects

• C(S) = set of configurations defined by S

– D(∆) ⊂ S = defining set of ∆ ∈ C(S)
size bounded by fixed constant

– K(∆) ⊂ S = conflict list of ∆ ∈ C(S)

• Goal: Compute Cact(S) =
{∆ ∈ C(S) : D(∆) ⊆ S and K(∆) ∩ S = ∅}

p
segments

trapezoids

99

Computing a single cell with RIC?

Input: Set S of n segments in the plane, and a point p

Goal: Compute the face of A(S) containing p

The RIC framework

• S = set of n input objects

• C(S) = set of configurations defined by S

– D(∆) ⊂ S = defining set of ∆ ∈ C(S)
size bounded by fixed constant

– K(∆) ⊂ S = conflict list of ∆ ∈ C(S)

• Goal: Compute Cact(S) =
{∆ ∈ C(S) : D(∆) ⊆ S and K(∆) ∩ S = ∅}

p
segments

trapezoids

100

Computing a single cell with RIC?

Input: Set S of n segments in the plane, and a point p

Goal: Compute the face of A(S) containing p

The RIC framework

• S = set of n input objects

• C(S) = set of configurations defined by S

– D(∆) ⊂ S = defining set of ∆ ∈ C(S)
size bounded by fixed constant

– K(∆) ⊂ S = conflict list of ∆ ∈ C(S)

• Goal: Compute Cact(S) =
{∆ ∈ C(S) : D(∆) ⊆ S and K(∆) ∩ S = ∅}

p
segments

trapezoids

101

Lazy Randomized Incremental Construction [dB-Dobrindt-Schwarzkopf ’94

Input: Set S of n segments in the plane, and a point p

Goal: Compute the face of A(S) containing p

The RIC framework

• S = set of n input objects

• C(S) = set of configurations defined by S

– D(∆) ⊂ S = defining set of ∆ ∈ C(S)
size bounded by fixed constant

– K(∆) ⊂ S = conflict list of ∆ ∈ C(S)

• Goal: Compute Cact(S) =
{∆ ∈ C(S) : D(∆) ⊆ S and K(∆) ∩ S = ∅}

p

?

segments

trapezoids

102

Theorem. Let S be a set of n line segments and let p be a point. Then
the single cell of A(S) defined by p can be computed in O(nα(n) log n)
expected time.

Lazy Randomized Incremental Construction

102

Theorem. Let S be a set of n line segments and let p be a point. Then
the single cell of A(S) defined by p can be computed in O(nα(n) log n)
expected time.

• Apply standard RIC approach to construct trapezoidal decomposition of
the whole arrangement.

• After iterations 1, 2, 4, 8, . . . perform a clean-up step.

Lazy Randomized Incremental Construction

102

Theorem. Let S be a set of n line segments and let p be a point. Then
the single cell of A(S) defined by p can be computed in O(nα(n) log n)
expected time.

• Apply standard RIC approach to construct trapezoidal decomposition of
the whole arrangement.

• After iterations 1, 2, 4, 8, . . . perform a clean-up step.

Lazy Randomized Incremental Construction

102

Theorem. Let S be a set of n line segments and let p be a point. Then
the single cell of A(S) defined by p can be computed in O(nα(n) log n)
expected time.

• Apply standard RIC approach to construct trapezoidal decomposition of
the whole arrangement.

• After iterations 1, 2, 4, 8, . . . perform a clean-up step.

Lazy Randomized Incremental Construction

103

Theorem. Let S be a set of n line segments and let p be a point. Then
the single cell of A(S) defined by p can be computed in O(nα(n) log n)
expected time.

• Apply standard RIC approach to construct trapezoidal decomposition of
the whole arrangement.

• After iterations 1, 2, 4, 8, . . . perform a clean-up step.

Lazy Randomized Incremental Construction

103

Theorem. Let S be a set of n line segments and let p be a point. Then
the single cell of A(S) defined by p can be computed in O(nα(n) log n)
expected time.

• Apply standard RIC approach to construct trapezoidal decomposition of
the whole arrangement.

• After iterations 1, 2, 4, 8, . . . perform a clean-up step.

Lazy Randomized Incremental Construction

104

Theorem. Let S be a set of n line segments and let p be a point. Then
the single cell of A(S) defined by p can be computed in O(nα(n) log n)
expected time.

• Apply standard RIC approach to construct trapezoidal decomposition of
the whole arrangement.

• After iterations 1, 2, 4, 8, . . . perform a clean-up step.

Lazy Randomized Incremental Construction

104

Theorem. Let S be a set of n line segments and let p be a point. Then
the single cell of A(S) defined by p can be computed in O(nα(n) log n)
expected time.

• Apply standard RIC approach to construct trapezoidal decomposition of
the whole arrangement.

• After iterations 1, 2, 4, 8, . . . perform a clean-up step.

Lazy Randomized Incremental Construction

105

Theorem. Let S be a set of n line segments and let p be a point. Then
the single cell of A(S) defined by p can be computed in O(nα(n) log n)
expected time.

• Apply standard RIC approach to construct trapezoidal decomposition of
the whole arrangement.

• After iterations 1, 2, 4, 8, . . . perform a clean-up step.

Lazy Randomized Incremental Construction

105

Theorem. Let S be a set of n line segments and let p be a point. Then
the single cell of A(S) defined by p can be computed in O(nα(n) log n)
expected time.

• Apply standard RIC approach to construct trapezoidal decomposition of
the whole arrangement.

• After iterations 1, 2, 4, 8, . . . perform a clean-up step.

Lazy Randomized Incremental Construction

105

Theorem. Let S be a set of n line segments and let p be a point. Then
the single cell of A(S) defined by p can be computed in O(nα(n) log n)
expected time.

• Apply standard RIC approach to construct trapezoidal decomposition of
the whole arrangement.

• After iterations 1, 2, 4, 8, . . . perform a clean-up step.

Lazy Randomized Incremental Construction

106

Theorem. Let S be a set of n line segments and let p be a point. Then
the single cell of A(S) defined by p can be computed in O(nα(n) log n)
expected time.

• Apply standard RIC approach to construct trapezoidal decomposition of
the whole arrangement.

• After iterations 1, 2, 4, 8, . . . perform a clean-up step.

after 7 iterations

Lazy Randomized Incremental Construction

107

Theorem. Let S be a set of n line segments and let p be a point. Then
the single cell of A(S) defined by p can be computed in O(nα(n) log n)
expected time.

• Apply standard RIC approach to construct trapezoidal decomposition of
the whole arrangement.

• After iterations 1, 2, 4, 8, . . . perform a clean-up step.

the 8-th iteration

Lazy Randomized Incremental Construction

108

Theorem. Let S be a set of n line segments and let p be a point. Then
the single cell of A(S) defined by p can be computed in O(nα(n) log n)
expected time.

• Apply standard RIC approach to construct trapezoidal decomposition of
the whole arrangement.

• After iterations 1, 2, 4, 8, . . . perform a clean-up step.

the 8-th iteration

Lazy Randomized Incremental Construction

108

Theorem. Let S be a set of n line segments and let p be a point. Then
the single cell of A(S) defined by p can be computed in O(nα(n) log n)
expected time.

• Apply standard RIC approach to construct trapezoidal decomposition of
the whole arrangement.

• After iterations 1, 2, 4, 8, . . . perform a clean-up step.

the 8-th iteration

Lazy Randomized Incremental Construction

109

Theorem. Let S be a set of n line segments and let p be a point. Then
the single cell of A(S) defined by p can be computed in O(nα(n) log n)
expected time.

• Apply standard RIC approach to construct trapezoidal decomposition of
the whole arrangement.

• After iterations 1, 2, 4, 8, . . . perform a clean-up step.

the 8-th iteration

Lazy Randomized Incremental Construction

109

Theorem. Let S be a set of n line segments and let p be a point. Then
the single cell of A(S) defined by p can be computed in O(nα(n) log n)
expected time.

• Apply standard RIC approach to construct trapezoidal decomposition of
the whole arrangement.

• After iterations 1, 2, 4, 8, . . . perform a clean-up step.

the 8-th iteration

clean-up phase:
remove trapezoids
not in the cell of p

Lazy Randomized Incremental Construction

110

Theorem. Let S be a set of n line segments and let p be a point. Then
the single cell of A(S) defined by p can be computed in O(nα(n) log n)
expected time.

• Apply standard RIC approach to construct trapezoidal decomposition of
the whole arrangement.

• After iterations 1, 2, 4, 8, . . . perform a clean-up step.

the 8-th iteration

clean-up phase:
remove trapezoids
not in the cell of p

Lazy Randomized Incremental Construction

111

• Resulting algorithm has same performance bounds as when one could
magically remove cells not in cell of p after each iteration

• Approach can also be formulated using abstract framework

• Can also be used to compute single cell in arrangement of triangles in
R3, of zone of set of hyperplanes in Rd, and more

Lazy Randomized Incremental Construction

112

Course Overview

substructures in
arrangements

Davenport-
Schinzel

sequences
Voronoi

diagrams and
Delaunay

triangulations

randomized
incremental
construction

lazy
randomized
incremental
construction

applications of
upper

envelopes

the
Clarkson-Shor

technique

113

Course Overview

substructures in
arrangements

Davenport-
Schinzel

sequences
Voronoi

diagrams and
Delaunay

triangulations

randomized
incremental
construction

lazy
randomized
incremental
construction

applications of
upper

envelopes

the
Clarkson-Shor

technique

114

The Complexity of Upper Envelopes

• n monotone curves with at most s intersections per pair

– complexity of upper envelope is near-linear

– infinite curves O(DSs(n)), finite curves O(DSs(n))

• n constant-degree algebraic surfaces in Rd

– complexity of upper envelope is O(nd−1+ε), for any fixed ε > 0

1 2
3 4

1
1

2

115

Upper Envelopes: Applications for Moving Ponits

P : set of n points in R2 that move linearly

• How often can the closest pair change, in the worst case?

• How often can the convex hull change, in the worst case?

• How often can the Delaunay triangulation change, in the worst case?

116

Upper Envelopes: Applications for Moving Ponits

How often can the closest pair change, in the worst case?

116

Upper Envelopes: Applications for Moving Ponits

How often can the closest pair change, in the worst case?

Lower bound

116

Upper Envelopes: Applications for Moving Ponits

How often can the closest pair change, in the worst case?

Lower bound

Ω(n2) changes

117

Upper Envelopes: Applications for Moving Ponits

How often can the closest pair change, in the worst case?

Upper bound

117

Upper Envelopes: Applications for Moving Ponits

How often can the closest pair change, in the worst case?

Upper bound

• for each pair p, q define fpq(t) := distance between p and q at time t

• number of changes = complexity of lower envelope of n2 functions

≈ O(n2)

118

Upper Envelopes: Applications for Moving Ponits

How often can the convex hull change, in the worst case?

Lower bound

118

Upper Envelopes: Applications for Moving Ponits

How often can the convex hull change, in the worst case?

Lower bound

Ω(n2) changes

119

Upper Envelopes: Applications for Moving Ponits

How often can the convex hull change, in the worst case?

Trivial upper bound

120

Upper Envelopes: Applications for Moving Ponits

How often can the convex hull change, in the worst case?

Trivial upper bound

convex hull changes =⇒ three points become collinear

=⇒ happens O(1) times for each triple

=⇒ O(n3) changes to convex hull

121

Upper Envelopes: Applications for Moving Ponits

How often can the convex hull change, in the worst case?

A better bound using upper envelopes

121

Upper Envelopes: Applications for Moving Ponits

How often can the convex hull change, in the worst case?

A better bound using upper envelopes

• for each point p define function fp : [0, 2π)× R>0 → R

θ

f p
(θ
, t

)

p

122

Upper Envelopes: Applications for Moving Ponits

How often can the convex hull change, in the worst case?

A better bound using upper envelopes

• for each point p define function fp : [0, 2π)× R>0 → R

• p is on convex hull at time t iff fp(θ, t) > fq(θ, t) for all q at time t

θ

f p
(θ
, t

)

p

123

Upper Envelopes: Applications for Moving Ponits

How often can the convex hull change, in the worst case?

A better bound using upper envelopes

• for each point p define function fp : [0, 2π)× R>0 → R

• p is on convex hull at time t iff fp(θ, t) > fq(θ, t) for all q at time t

• number of changes

= O(complexity of upper envelope of surfaces in R3) = O(n2+ε)

θ

f p
(θ
, t

)

p

124

Upper Envelopes: Applications for Moving Ponits

How often can the Delaunay triangulation change, in the worst case?

124

Upper Envelopes: Applications for Moving Ponits

How often can the Delaunay triangulation change, in the worst case?

DT changes when convex hull changes =⇒ Ω(n2) changes

Exercises

1. Give a trivial upper bound on the number of changes.

2. Give an improved upper bound using upper envelopes.

125

Upper Envelopes: Applications for Moving Ponits

How often can the Delaunay triangulation change, in the worst case?

1. When DT changes, four points become co-circular =⇒ O(n4) changes

126

Upper Envelopes: Applications for Moving Ponits

How often can the Delaunay triangulation change, in the worst case?

1. When DT changes, four points become co-circular =⇒ O(n4) changes

2. When convex hull changes, DT changes =⇒ Ω(n2) changes

127

Upper Envelopes: Applications for Moving Ponits

How often can the Delaunay triangulation change, in the worst case?

1. When DT changes, four points become co-circular =⇒ O(n4) changes

2. for each pair p, q, and each r, define function f
(r)
pq (t) : R>0 → R

r

p

q

127

Upper Envelopes: Applications for Moving Ponits

How often can the Delaunay triangulation change, in the worst case?

1. When DT changes, four points become co-circular =⇒ O(n4) changes

2. for each pair p, q, and each r, define function f
(r)
pq (t) : R>0 → R

r

p

q

p, q, r form triangle in DT: f
(r)
pq (t) < f

(r′)
pq (t) for all r′

127

Upper Envelopes: Applications for Moving Ponits

How often can the Delaunay triangulation change, in the worst case?

1. When DT changes, four points become co-circular =⇒ O(n4) changes

2. for each pair p, q, and each r, define function f
(r)
pq (t) : R>0 → R

r

p

q

p, q, r form triangle in DT: f
(r)
pq (t) < f

(r′)
pq (t) for all r′

number of changes = n2× complexity of lower envelope in R2 ≈ O(n3)

127

Upper Envelopes: Applications for Moving Ponits

How often can the Delaunay triangulation change, in the worst case?

1. When DT changes, four points become co-circular =⇒ O(n4) changes

2. for each pair p, q, and each r, define function f
(r)
pq (t) : R>0 → R

r

p

q

p, q, r form triangle in DT: f
(r)
pq (t) < f

(r′)
pq (t) for all r′

number of changes = n2× complexity of lower envelope in R2 ≈ O(n3)

[Rubin ’15; 85 pages]
for linear motions the DT
changes O(n2+ε) times

128

Course Overview

substructures in
arrangements

Davenport-
Schinzel

sequences
Voronoi

diagrams and
Delaunay

triangulations

randomized
incremental
construction

lazy
randomized
incremental
construction

applications of
upper

envelopes

the
Clarkson-Shor

technique

129

Course Overview

substructures in
arrangements

Davenport-
Schinzel

sequences
Voronoi

diagrams and
Delaunay

triangulations

randomized
incremental
construction

lazy
randomized
incremental
construction

applications of
upper

envelopes

the
Clarkson-Shor

technique

130

Levels in arrangements

130

Levels in arrangements

0-level

131

Levels in arrangements

1-level

132

Levels in arrangements

2-level

133

Levels in arrangements

(6 2)-level

134

Levels in arrangements

What is the max complexity of the k-level in an arrangement of n lines?

• 0-level = lower envelope =⇒ complexity 6 n

• k > 1: complexity is n2Ω(
√

log k) and O(nk1/3)

135

The Clarkson-Shor Technique: Application to (6 k)-levels

What is the max complexity of the (6 k)-level in an arrangement of n lines?

135

The Clarkson-Shor Technique: Application to (6 k)-levels

What is the max complexity of the (6 k)-level in an arrangement of n lines?

Clarkson-Shor ’89: Θ(nk)

136

Theorem. The max complexity of the (6 k)-level in an arrangement
induced by a set L of n lines in the plane is O(nk).

The Clarkson-Shor Technique: Application to (6 k)-levels

136

Theorem. The max complexity of the (6 k)-level in an arrangement
induced by a set L of n lines in the plane is O(nk).

Proof.

The Clarkson-Shor Technique: Application to (6 k)-levels

136

Theorem. The max complexity of the (6 k)-level in an arrangement
induced by a set L of n lines in the plane is O(nk).

Proof.

Take sample R ⊂ L by picking each line ` ∈ L with probability 1/k.

The Clarkson-Shor Technique: Application to (6 k)-levels

136

Theorem. The max complexity of the (6 k)-level in an arrangement
induced by a set L of n lines in the plane is O(nk).

Proof.

Take sample R ⊂ L by picking each line ` ∈ L with probability 1/k.

E
[
complexity of 0-level of R

]
6 E

[
|R|
]

= n/k

The Clarkson-Shor Technique: Application to (6 k)-levels

136

Theorem. The max complexity of the (6 k)-level in an arrangement
induced by a set L of n lines in the plane is O(nk).

Proof.

Take sample R ⊂ L by picking each line ` ∈ L with probability 1/k.

E
[
complexity of 0-level of R

]
6 E

[
|R|
]

= n/k

v

6 k lines

vertex of k-level of L shows up on 0-level of R iff

• both lines defining v are in R

• none of the at most k lines below v are in R

The Clarkson-Shor Technique: Application to (6 k)-levels

136

Theorem. The max complexity of the (6 k)-level in an arrangement
induced by a set L of n lines in the plane is O(nk).

Proof.

Take sample R ⊂ L by picking each line ` ∈ L with probability 1/k.

E
[
complexity of 0-level of R

]
6 E

[
|R|
]

= n/k

v

6 k lines

vertex of k-level of L shows up on 0-level of R iff

• both lines defining v are in R

• none of the at most k lines below v are in R

prob >
(

1
k

)2 · (1− 1
k

)k
>
(

1
k

)2 · 1
e

The Clarkson-Shor Technique: Application to (6 k)-levels

136

Theorem. The max complexity of the (6 k)-level in an arrangement
induced by a set L of n lines in the plane is O(nk).

Proof.

Take sample R ⊂ L by picking each line ` ∈ L with probability 1/k.

E
[
complexity of 0-level of R

]
6 E

[
|R|
]

= n/k

v

6 k lines

vertex of k-level of L shows up on 0-level of R iff

• both lines defining v are in R

• none of the at most k lines below v are in R

prob >
(

1
k

)2 · (1− 1
k

)k
>
(

1
k

)2 · 1
e

E
[
complexity of 0-level of R

]
> (complexity of k-level in L) ·

(
1
k

)2 · 1
e

The Clarkson-Shor Technique: Application to (6 k)-levels

137

Another application: Depth in Disk Arrangements

1 2

2

2

3

1

1

1

Exercises

1. Prove that the total number of vertices on the union boundary is O(n). Hint:
Define a suitable planar graph whose nodes are disk centers.

2. Prove that the total number of regions of depth at most k is O(nk).

4

138

Course Overview

substructures in
arrangements

Davenport-
Schinzel

sequences
Voronoi

diagrams and
Delaunay

triangulations

randomized
incremental
construction

lazy
randomized
incremental
construction

applications of
upper

envelopes

the
Clarkson-Shor

technique

139

Thanks for your attention!

TSP Art by Carig Kaplan and Robert Bosch

140TU e

