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Geometry is everywhere . . .

• geographic information systems

• computer-aided design and manufacturing

• virtual reality

• robotics

• computational biology

• sensor networks

• databases

• and more . . .

age

salary

30 45

35K

50K

Algorithms for Spatial Data
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area within algorithms research dealing with spatial data

Computational Geometry

• aim for provably correct solutions (no heuristics)

• theoretical analysis of running time, memory usage: O(· · · )

Computational Geometry
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example problem: line-segment intersection

Computational Geometry

Compute all k intersections in a
set S of n line segments.
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example problem: line-segment intersection

1. for every pair of segments in S
2. do compute (possible) intersection

• running time O(n2)

• can we do better if k is small?
yes: O(n log n)

Computational Geometry

Compute all k intersections in a
set S of n line segments.
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example problem: line-segment intersection

1. for every pair of segments in S
2. do compute (possible) intersection

Computational geometry

• focus on scale-up behavior

• basic operations are assumed available
(compute intersection of two lines, distance
between two points, etc.)

• running time O(n2)

• can we do better if k is small?
yes: O(n log n)

Computational Geometry

Compute all k intersections in a
set S of n line segments.
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Algorithmic design techniques and tools

• plane sweep

• geometric divide-and-conquer

• randomized incremental construction

• parametric search

• (multi-level) geometric data structures

Geometric structures and concepts

• Voronoi diagrams and Delaunay triangulations

• arrangements

• cuttings, simplicial partitions, polynomial partitions

• coresets

Computational Geometry: Tools of the Trade
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Warm-up Exercise
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Warm-up Exercise

Analyze worst-case and the expected running time of the following algorithm

ParanoidMax(A)
B computes maximum in an array A[0..n− 1]

1: Randomly permutate the elements in the array A
2: max ← A[0]
3: for i← 1 to n− 1 do
4: if A[i] > max then
5: max ← A[i]
6: for j ← 0 to i− 1 do
7: if A[j] > max then error

8: return max

to be on the safe side, check if A[i] is
indeed the largest element in A[0..i]
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Analyze worst-case and the expected running time of the following algorithm

ParanoidMax(A)
B computes maximum in an array A[0..n− 1]

1: Randomly permutate the elements in the array A
2: max ← A[0]
3: for i← 1 to n− 1 do
4: if A[i] > max then
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Warm-up Exercise

Analyze worst-case and the expected running time of the following algorithm

ParanoidMax(A)
B computes maximum in an array A[0..n− 1]

1: Randomly permutate the elements in the array A
2: max ← A[0]
3: for i← 1 to n− 1 do
4: if A[i] > max then
5: max ← A[i]
6: for j ← 0 to i− 1 do
7: if A[j] > max then error

8: return max

• generates permutation
uniformly at random

• assume this can be done
in O(n) time
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Worst-case analysis

running time = O(n) +
∑n−1

i=1 (worst-case time for i-th iteration)

= O(n) +
∑n−1

i=1 O(i)

= O(n2)
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Analysis of expected running time

E [running time] = E
[
O(n) +

∑n−1
i=1 time for i-th iteration

]
= O(n) +

∑n−1
i=1 E [time for i-th iteration]
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Analysis of expected running time

E [running time] = E
[
O(n) +

∑n−1
i=1 time for i-th iteration

]
= O(n) +

∑n−1
i=1 E [time for i-th iteration]

E [time for i-th iteration] = Pr [max changes in i-th iteration] ·O(i)

+ Pr [max does not change] ·O(1)
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Analysis of expected running time

E [running time] = E
[
O(n) +
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]
= O(n) +

∑n−1
i=1 E [time for i-th iteration]

E [time for i-th iteration] = Pr [max changes in i-th iteration] ·O(i)

+ Pr [max does not change] ·O(1)

backwards analysis

max changes when adding
A[i] to {A[0], . . . , A[i− 1]}

max changes when removing A[i]
from {A[0], . . . , A[i]}⇐⇒
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Analysis of expected running time

E [running time] = E
[
O(n) +

∑n−1
i=1 time for i-th iteration

]
= O(n) +

∑n−1
i=1 E [time for i-th iteration]

E [time for i-th iteration] = Pr [max changes in i-th iteration] ·O(i)

+ Pr [max does not change] ·O(1)

backwards analysis

max changes when adding
A[i] to {A[0], . . . , A[i− 1]}

max changes when removing A[i]
from {A[0], . . . , A[i]}⇐⇒

6 1/i

= O(n)

with respect to random choices of algorithm,
no assumptions on input distribution
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Sorting using (Randomized) Incremental Construction
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Sorting using (Randomized) Incremental Construction

A geometric view of sorting

Input: A set S = {x1, . . . , xn} of n points in R1

Output: Sorted set I of intervals into which S partitions R1

x1 x2x3x4x5 x6
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Sorting using (Randomized) Incremental Construction

A geometric view of sorting

Input: A set S = {x1, . . . , xn} of n points in R1

Output: Sorted set I of intervals into which S partitions R1

x1 x2x3x4x5 x6

Incremental construction:

Add points one by one, and update I after each addition
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Sorting using (Randomized) Incremental Construction

IC-Sort(S)

1: I ← {[−∞,+∞]}
2: for j ← 1 to n do
3:

Find interval I = [x, x′] in I that contains xj
Remove I from I and insert [x, xj ] and [xj , x

′] into I

4: return I
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Sorting using (Randomized) Incremental Construction

IC-Sort(S)

1: I ← {[−∞,+∞]}
2: for j ← 1 to n do
3:

Find interval I = [x, x′] in I that contains xj
Remove I from I and insert [x, xj ] and [xj , x

′] into I

4: return I
• for each point xi maintain a pointer to the interval
I ∈ I that contains xi

• for each interval I ∈ I maintain a conflict list K(I) that
stores all points contained in I

x1 x2x3x4x5 x6

I1 I2 I3
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Sorting using (Randomized) Incremental Construction
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Sorting using (Randomized) Incremental Construction

IC-Sort(S)

1: I ← {[−∞,+∞]}
2: for j ← 1 to n do
3:

4: return I
• for each point xi maintain a pointer to the interval
I ∈ I that contains xi

• for each interval I ∈ I maintain a conflict list K(I) that
stores all points contained in I

x1 x2x3x4x5 x6

I1 I2 I3

(i) Use pointer from xi to find interval I containing xi
(ii) Split I at xi into intervals I ′ and I ′′, and replace I in I by I ′, I ′′

(iii) Construct K(I ′) and K(I ′′) from K(I)
(iv) Update pointers of points in K(I ′) and K(I ′′)
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Sorting using (Randomized) Incremental Construction

IC-Sort(S)

1: I ← {[−∞,+∞]}
2: for j ← 1 to n do
3:

4: return I
• for each point xi maintain a pointer to the interval
I ∈ I that contains xi

• for each interval I ∈ I maintain a conflict list K(I) that
stores all points contained in I

x1 x2x3x4x5 x6

I1 I2 I3
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(ii) Split I at xi into intervals I ′ and I ′′, and replace I in I by I ′, I ′′

(iii) Construct K(I ′) and K(I ′′) from K(I)
(iv) Update pointers of points in K(I ′) and K(I ′′)

Set I ← [−∞,∞] and I ← {I}, give each xj a pointer to I, set K(I)← S
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Sorting using (Randomized) Incremental Construction

IC-Sort(S)

1: I ← {[−∞,+∞]}
2: for j ← 1 to n do
3:

4: return I

(i) Use pointer from xi to find interval I containing xi
(ii) Split I at xi into intervals I ′ and I ′′, and replace I in I by I ′, I ′′
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Sorting using (Randomized) Incremental Construction

IC-Sort(S)

1: I ← {[−∞,+∞]}
2: for j ← 1 to n do
3:

4: return I

(i) Use pointer from xi to find interval I containing xi
(ii) Split I at xi into intervals I ′ and I ′′, and replace I in I by I ′, I ′′

(iii) Construct K(I ′) and K(I ′′) from K(I)
(iv) Update pointers of points in K(I ′) and K(I ′′)

Running time: O(
∑n

j=1 (size of conflict list split in j-th iteration))

Set I ← [−∞,∞] and I ← {I}, give each xj a pointer to I, set L(I)← S
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Sorting using (Randomized) Incremental Construction

IC-Sort(S)

1: I ← {[−∞,+∞]}
2: for j ← 1 to n do
3:

4: return I

(i) Use pointer from xi to find interval I containing xi
(ii) Split I at xi into intervals I ′ and I ′′, and replace I in I by I ′, I ′′

(iii) Construct K(I ′) and K(I ′′) from K(I)
(iv) Update pointers of points in K(I ′) and K(I ′′)

Running time: O(
∑n

j=1 (size of conflict list split in j-th iteration))

• worst case: in each step j, we split a conflict list of size n− j + 1 into
lists of size 0 and n− j

Set I ← [−∞,∞] and I ← {I}, give each xj a pointer to I, set L(I)← S
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Sorting using (Randomized) Incremental Construction

IC-Sort(S)

1: I ← {[−∞,+∞]}
2: for j ← 1 to n do
3:

4: return I

(i) Use pointer from xi to find interval I containing xi
(ii) Split I at xi into intervals I ′ and I ′′, and replace I in I by I ′, I ′′

(iii) Construct K(I ′) and K(I ′′) from K(I)
(iv) Update pointers of points in K(I ′) and K(I ′′)

Running time: O(
∑n

j=1 (size of conflict list split in j-th iteration))

• worst case: in each step j, we split a conflict list of size n− j + 1 into
lists of size 0 and n− j

running time is O(
∑n

j=1(n− j + 1)) = O(n2)

Set I ← [−∞,∞] and I ← {I}, give each xj a pointer to I, set L(I)← S
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Sorting using (Randomized) Incremental Construction

IC-Sort(S)

1: I ← {[−∞,+∞]}
2: for j ← 1 to n do
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4: return I

(i) Use pointer from xi to find interval I containing xi
(ii) Split I at xi into intervals I ′ and I ′′, and replace I in I by I ′, I ′′

(iii) Construct K(I ′) and K(I ′′) from K(I)
(iv) Update pointers of points in K(I ′) and K(I ′′)

Running time: O(
∑n

j=1 (size of conflict list split in j-th iteration))

Set I ← [−∞,∞] and I ← {I}, give each xj a pointer to I, set L(I)← S
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Sorting using (Randomized) Incremental Construction

IC-Sort(S)

1: I ← {[−∞,+∞]}
2: for j ← 1 to n do
3:

4: return I

(i) Use pointer from xi to find interval I containing xi
(ii) Split I at xi into intervals I ′ and I ′′, and replace I in I by I ′, I ′′

(iii) Construct K(I ′) and K(I ′′) from K(I)
(iv) Update pointers of points in K(I ′) and K(I ′′)

Running time: O(
∑n

j=1 (size of conflict list split in j-th iteration))

Set I ← [−∞,∞] and I ← {I}, give each xj a pointer to I, set L(I)← S

Put points xi in random order



17

Sorting using (Randomized) Incremental Construction

IC-Sort(S)

1: I ← {[−∞,+∞]}
2: for j ← 1 to n do
3:

4: return I
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j=1 (size of conflict list split in j-th iteration))

Set I ← [−∞,∞] and I ← {I}, give each xj a pointer to I, set L(I)← S

Put points xi in random order

• expected:

apply backwards analysis

x1 x2x3x4x5 x6

I1 I2 I3
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Sorting using (Randomized) Incremental Construction

IC-Sort(S)

1: I ← {[−∞,+∞]}
2: for j ← 1 to n do
3:

4: return I

(i) Use pointer from xi to find interval I containing xi
(ii) Split I at xi into intervals I ′ and I ′′, and replace I in I by I ′, I ′′
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Running time: O(
∑n

j=1 (size of conflict list split in j-th iteration))

Set I ← [−∞,∞] and I ← {I}, give each xj a pointer to I, set L(I)← S

Put points xi in random order

• expected:

apply backwards analysis

x1 x2x3x4x5 x6

I1 I2 I3

at most
1 + (n− j + 1) · 2

j
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Sorting using (Randomized) Incremental Construction

IC-Sort(S)

1: I ← {[−∞,+∞]}
2: for j ← 1 to n do
3:

4: return I

(i) Use pointer from xi to find interval I containing xi
(ii) Split I at xi into intervals I ′ and I ′′, and replace I in I by I ′, I ′′

(iii) Construct K(I ′) and K(I ′′) from K(I)
(iv) Update pointers of points in K(I ′) and K(I ′′)

Running time: O(
∑n

j=1 (size of conflict list split in j-th iteration))

Set I ← [−∞,∞] and I ← {I}, give each xj a pointer to I, set L(I)← S

Put points xi in random order

• expected:

apply backwards analysis

x1 x2x3x4x5 x6

I1 I2 I3

at most
1 + (n− j + 1) · 2

j

∑n
j=1

(
1 + 2(n−j+1)

j

)
= O

(
n+ n

∑n
j=1

1
j

)
= O(n log n)
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Randomized Incremental Construction: The Framework
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Randomized Incremental Construction: The Framework

• S = set of n input objects

• C(S) = set of configurations defined by S

– D(∆) ⊂ S = defining set of ∆ ∈ C(S)
size should be bounded by a fixed constant

– K(∆) ⊂ S = conflict list of ∆ ∈ C(S)
K(∆) ∩D(∆) = ∅ for all ∆
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Randomized Incremental Construction: The Framework

• S = set of n input objects

• C(S) = set of configurations defined by S

– D(∆) ⊂ S = defining set of ∆ ∈ C(S)
size should be bounded by a fixed constant

– K(∆) ⊂ S = conflict list of ∆ ∈ C(S)
K(∆) ∩D(∆) = ∅ for all ∆

For S′ ⊆ S, define Cact(S
′) = {∆ ∈ C(S) : D(∆) ⊆ S′ and K(∆) ∩ S′ = ∅}

to be the set of configurations that are active with respect to S′

Goal: compute set Cact(S) of active configurations with respect to S
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Randomized Incremental Construction: The Framework

• S = set of n input objects

• C(S) = set of configurations defined by S

– D(∆) ⊂ S = defining set of ∆ ∈ C(S)
size should be bounded by a fixed constant

– K(∆) ⊂ S = conflict list of ∆ ∈ C(S)
K(∆) ∩D(∆) = ∅ for all ∆

For S′ ⊆ S, define Cact(S
′) = {∆ ∈ C(S) : D(∆) ⊆ S′ and K(∆) ∩ S′ = ∅}

to be the set of configurations that are active with respect to S′

Goal: compute set Cact(S) of active configurations with respect to S

Example: sorting

C(S) :=
{
[xi, xj ] : xi, xj ∈ S ∪ {−∞,+∞} and xi < xj

}x1 x2x3x4x5 x6
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Randomized Incremental Construction: The Algorithm

RIC-Algorithm(S)

1: Compute a random permutation x1, . . . , xn of the objects in S
2: Cact ← {active configurations with respect to ∅}
3: Intitialize conflict lists of configurations ∆ ∈ Cact

4: for j ← 1 to n do
5: Remove configurations from Cact that are in conflict with xj
6: Determine new active configurations and insert them into Cact

7: Construct conflict lists of new active configurations

8: return Cact
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Randomized Incremental Construction: The Algorithm

RIC-Algorithm(S)

1: Compute a random permutation x1, . . . , xn of the objects in S
2: Cact ← {active configurations with respect to ∅}
3: Intitialize conflict lists of configurations ∆ ∈ Cact

4: for j ← 1 to n do
5: Remove configurations from Cact that are in conflict with xj
6: Determine new active configurations and insert them into Cact

7: Construct conflict lists of new active configurations

8: return Cact

To find configurations that become inactive:

• for each xj maintain a list of all configurations ∆ ∈ Cact with xj ∈ K(∆)

• for each configuration ∆ ∈ Cact maintain its conflict list K(∆)
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Randomized Incremental Construction: The Algorithm

RIC-Algorithm(S)

1: Compute a random permutation x1, . . . , xn of the objects in S
2: Cact ← {active configurations with respect to ∅}
3: Intitialize conflict lists of configurations ∆ ∈ Cact

4: for j ← 1 to n do
5: Remove configurations from Cact that are in conflict with xj
6: Determine new active configurations and insert them into Cact

7: Construct conflict lists of new active configurations

8: return Cact



20

Randomized Incremental Construction: The Algorithm

RIC-Algorithm(S)

1: Compute a random permutation x1, . . . , xn of the objects in S
2: Cact ← {active configurations with respect to ∅}
3: Intitialize conflict lists of configurations ∆ ∈ Cact

4: for j ← 1 to n do
5: Remove configurations from Cact that are in conflict with xj
6: Determine new active configurations and insert them into Cact

7: Construct conflict lists of new active configurations

8: return Cact

Theorem. Let Sj := {x1, . . . , xj}. Then

(i) E
[
|Cact(Sj) \ Cact(Sj−1)|

]
= O

(
E[size of Cact(Sj)]

j

)
(ii) The total size of the conflict lists of the active configurations appearing

over the course of the algorithm is O
(∑n

j=1
n
j2 · E [ |Cact(Sj)| ]

)



21

Exercises

1. Give an algorithm that computes (all edges of) the
convex hull of a set S of n points in the plane that
runs in O(n log n) expected time.

2. Give an algorithm that computes all k intersections in
a set S of n segments in the plane that runs in
O(n log n+ k) expected time.
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Computing Convex Hulls with RIC

The framework

• S = set of n input objects

• C(S) = set of configurations defined by S

– D(∆) ⊂ S = defining set of ∆ ∈ C(S)
size should be bounded by a fixed constant

– K(∆) ⊂ S = conflict list of ∆ ∈ C(S)

• Goal: Compute Cact(S) = {∆ ∈ C(S) : D(∆) ⊆ S and K(∆) ∩ S = ∅}
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Computing Convex Hulls with RIC

The framework

• S = set of n input objects

• C(S) = set of configurations defined by S

– D(∆) ⊂ S = defining set of ∆ ∈ C(S)
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RIC-Algorithm(S)

1: Compute a random permutation x1, . . . , xn of the objects in S
2: Cact ← {active configurations with respect to ∅}
3: Intitialize conflict lists of configurations ∆ ∈ Cact

4: for j ← 1 to n do
5: Remove configurations from Cact that are in conflict with xj
6: Determine new active configurations and insert them into Cact

7: Construct conflict lists of new active configurations

8: return Cact
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RIC-Algorithm(S)

1: Compute a random permutation x1, . . . , xn of the objects in S
2: Cact ← {active configurations with respect to ∅}
3: Intitialize conflict lists of configurations ∆ ∈ Cact

4: for j ← 1 to n do
5: Remove configurations from Cact that are in conflict with xj
6: Determine new active configurations and insert them into Cact

7: Construct conflict lists of new active configurations

8: return Cact

first three points

conflict lists are subset of
union of old conflict lists

• in conflict with two configs

• two new configs appear
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Randomized Incremental Construction: The Algorithm

Theorem. Let Sj := {x1, . . . , xj}. Then

(i) E
[
|Cact(Sj) \ Cact(Sj−1)|

]
= O

(
E[size of Cact(Sj)]

j

)
(ii) The total size of the conflict lists of the active configurations appearing

over the course of the algorithm is O
(∑n

j=1
n
j2 · E [ |Cact(Sj)| ]

)
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Theorem. Let Sj := {x1, . . . , xj}. Then

(i) E
[
|Cact(Sj) \ Cact(Sj−1)|

]
= O

(
E[size of Cact(Sj)]

j

)
(ii) The total size of the conflict lists of the active configurations appearing

over the course of the algorithm is O
(∑n

j=1
n
j2 · E [ |Cact(Sj)| ]

)

• |Cact(Sj)| 6 j

• total running time is linear in total size of all (dis)appearing conflict lists

convex-hull algorithm runs in O(n log n) time
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Terrain Reconstruction

Image: www.aurorasolar.com
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Principia Philosiphiae (Descartes, 1664)

Voronoi diagram

Georgy Voronoy
(1868-1908)
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931

942

927

899

912

922

=⇒

Input: terrain elevation
at sample points

Back to terrain reconstruction . . .

Goal: construct continuous
terrain surface

Terrain Reconstruction from Elevation Data
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931

942

927

899

912

922
elevation?

Idea: use elevation of
nearest sample point

Voronoi diagram

Not good: surface not continuous

Terrain Reconstruction from Elevation Data
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Better idea: determine elevation using interpolation

Terrain Reconstruction from Elevation Data



42

triangulation
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triangulation

Better idea: determine elevation using interpolation

gives continuous surface

Terrain Reconstruction from Elevation Data
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Which triangulation should we use?

or or . . .

Terrain Reconstruction from Elevation Data
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Which triangulation should we use?

or or . . .

long and thin triangles are bad =⇒ try to avoid small angles

Algorithmic problem: How can we quickly compute a triangulation that
maximizes the minimum angle?

Terrain Reconstruction from Elevation Data
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Terrain Reconstruction from Elevation Data

Voronoi diagram
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Voronoi diagram

Delaunay triangulation:

triangulation that maximizes
the minimum angle!

Terrain Reconstruction from Elevation Data

connect points whose
cells are neighbors

Boris Delaunay
(1890 -1980)
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Computing the Delaunay Triangulation
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3: if all other points from S lie outside Circle(p, q, r) then
4: Add ∆(p, q, r) to T
5: return T
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∆(p, q, r) is in Delaunay triangulation

⇐⇒
Circle(p, q, r) contains no other point

Computing the Delaunay Triangulation

Delaunay-Algorithm(S)

1: T ← ∅
2: for every triple of points p, q, r from S do
3: if all other points from S lie outside Circle(p, q, r) then
4: Add ∆(p, q, r) to T
5: return T Running time: O(n4)
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Computing the Delaunay Triangulation by RIC

Exercise

Apply the RIC framework to develop a randomized algorithm to compute the
Delaunay triangulation, and analyze its running time.

Fact: The number of triangles in the Delaunay triangulation of a set S of n points

in the plane is at most 2n− 5.
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Fact: The number of triangles in the Delaunay triangulation of a set S of n points
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The framework
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• C(S) = set of configurations defined by S

– D(∆) ⊂ S = defining set of ∆ ∈ C(S)
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Computing the Delaunay Triangulation by RIC

• S = set of n input objects

• C(S) = set of configurations defined by S

– D(∆) ⊂ S = defining set of ∆ ∈ C(S)
size bounded by fixed constant

– K(∆) ⊂ S = conflict list of ∆ ∈ C(S)

• Goal: Compute Cact(S) =
{∆ ∈ C(S) : D(∆) ⊆ S and K(∆) ∩ S = ∅}

all points contained in
circumcircle of ∆

input points

all possible triangles
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Computing the Delaunay Triangulation by RIC

RIC-Delaunay(S)

1: Compute a random permutation x1, . . . , xn of the objects in S.
2: Cact ← {active configurations with respect to ∅}
3: Intitialize conflict lists of configurations ∆ ∈ Cact

4: for j ← 1 to n do
5: Remove all configurations from Cact that become inactive
6: Determine new active configurations and insert them into Cact

7: Construct conflict lists of new active configurations

8: return Cact
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Computing the Delaunay Triangulation by RIC

RIC-Delaunay(S)

1: Compute a random permutation x1, . . . , xn of the objects in S.
2: Cact ← {active configurations with respect to ∅}
3: Intitialize conflict lists of configurations ∆ ∈ Cact

4: for j ← 1 to n do
5: Remove all configurations from Cact that become inactive
6: Determine new active configurations and insert them into Cact

7: Construct conflict lists of new active configurations

8: return Cact

Observation: new edges
go from inserted point to
points on hole boundary

takes most time . . .
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Analysis of the Algorithm

Theorem. Let Sj := {x1, . . . , xj}. Then

(i) E
[
|Cact(Sj) \ Cact(Sj−1)|

]
= O

(
E[size of Cact(Sj)]

j

)
(ii) The total size of the conflict lists of the active configurations appearing

over the course of the algorithm is O
(∑n

j=1
n
j2 · E [ |Cact(Sj)| ]

)



56

Analysis of the Algorithm

Theorem. Let Sj := {x1, . . . , xj}. Then

(i) E
[
|Cact(Sj) \ Cact(Sj−1)|

]
= O

(
E[size of Cact(Sj)]

j

)
(ii) The total size of the conflict lists of the active configurations appearing

over the course of the algorithm is O
(∑n

j=1
n
j2 · E [ |Cact(Sj)| ]

)

Delaunay triangulation in the plane:

size of Cact(Sj) = #(triangles of Delaunay triangulation of j points) = O(j)

=⇒ total size of all conflict lists = O(n log n)



56

Analysis of the Algorithm

Theorem. Let Sj := {x1, . . . , xj}. Then

(i) E
[
|Cact(Sj) \ Cact(Sj−1)|

]
= O

(
E[size of Cact(Sj)]

j

)
(ii) The total size of the conflict lists of the active configurations appearing

over the course of the algorithm is O
(∑n

j=1
n
j2 · E [ |Cact(Sj)| ]

)

Delaunay triangulation in the plane:

size of Cact(Sj) = #(triangles of Delaunay triangulation of j points) = O(j)

Theorem. The Delaunay triangulation of a set of n points in the plane can
be computed in O(n log n) expected time, using RIC.

=⇒ total size of all conflict lists = O(n log n)
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Voronoi Diagrams and Delaunay Triangulations

Fun Facts and Application
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Voronoi Diagrams and Delaunay Triangulations: Fun Facts

dilation (= stretch factor = spanning ratio) of Delaunay triangulation
is at most 1.998.
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Voronoi Diagrams and Delaunay Triangulations: Fun Facts

Voronoi diagram in Rd ≡ half-space intersection in Rd+1 ≈ convex hull in Rd+1
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Voronoi Diagrams and Delaunay Triangulations: Fun Facts

Voronoi diagram in Rd ≡ half-space intersection in Rd+1 ≈ convex hull in Rd+1

map line y = ax+ b to point (a,−b)

y = x

y = 2

y = −x+ 2

y = 1
2x+ 1

2
( 1

2 ,−
1
2 )

(1, 0)

(0,−2)(−1,−2)

upper envelope ≡ lower hulll

=⇒
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Delaunay Triangulations: Application to CF-Coloring

for q ∈ R2 define D(q) := { disks containing q }

Conflict-free coloring: coloring of disks such that, for any q with S(q) 6= ∅,
the set D(q) has a disk with a unique color
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Delaunay Triangulations: Application to CF-Coloring

for q ∈ R2 define D(q) := { disks containing q }

Conflict-free coloring: coloring of disks such that, for any q with S(q) 6= ∅,
the set D(q) has a disk with a unique color
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Delaunay Triangulations: Application to CF-Coloring

Theorem. For any set of n unit disks, there exists a conflict-free
coloring with O(log n) colors, and this is best possible.
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Delaunay Triangulations: Application to CF-Coloring

Invert problem: color disk centers with respect to unit disks as ranges
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Delaunay Triangulations: Application to CF-Coloring

Invert problem: color disk centers with respect to unit disks as ranges

=⇒
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Delaunay Triangulations: Application to CF-Coloring

The coloring algorithm

Initally P = {all points} and i = 1

1. I := max independent set in Delaunay triangulation

2. Give all points in I color i

3. Set i := i+ 1 and recurse on P \ I
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Delaunay Triangulations: Application to CF-Coloring

The coloring algorithm

Initally P = {all points} and i = 1

1. I := max independent set in Delaunay triangulation

2. Give all points in I color i

3. Set i := i+ 1 and recurse on P \ I

(p, q) is edge in DT iff there is
a circle containing only p, q
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Delaunay Triangulations: Application to CF-Coloring

The coloring algorithm

Initally P = {all points} and i = 1
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Delaunay Triangulations: Application to CF-Coloring

The coloring algorithm

Initally P = {all points} and i = 1

1. I := max independent set in Delaunay triangulation

2. Give all points in I color i

3. Set i := i+ 1 and recurse on P \ I

and so on . . .
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Delaunay Triangulations: Application to CF-Coloring

Claim. Number of colors = O(log n).
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Delaunay Triangulations: Application to CF-Coloring

• C(n) := number of colors

C(n) 6 1 + C
(

3
4n
)

=⇒ C(n) = O(log n)

Claim. Number of colors = O(log n).

• Four Color Theorem =⇒ size max indep set > 1
4n
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Delaunay Triangulations: Application to CF-Coloring

any non-empty disk must have point with unique color

Claim. Coloring is conflict-free.
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• disk has single point with color 1
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Delaunay Triangulations: Application to CF-Coloring

any non-empty disk must have point with unique color

• disk has single point with color 1

• disk has no point with color 1: induction

Claim. Coloring is conflict-free.
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Delaunay Triangulations: Application to CF-Coloring

any non-empty disk must have point with unique color

• disk has single point with color 1

• disk has no point with color 1

• disk has > 2 points with color 1
disk must contain other points =⇒ induction

Claim. Coloring is conflict-free.
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Delaunay Triangulations: Application to CF-Coloring

any non-empty disk must have point with unique color

• disk has single point with color 1

• disk has no point with color 1

• disk has > 2 points with color 1
disk must contain other points =⇒ induction

Claim. Coloring is conflict-free.
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Davenport-Schinzel sequences

Harold Davenport
(1907–1965)

Andrzej Schinzel
(1937–2021)

A combinatorial problem

Consider a sequence over the alphabet
{1, . . . , n} such that

• . . . i i . . . does not appear

• . . . i . . . j . . . i . . . j . . . does not appear

How long can such a sequence be?
American Journal of Mathematics 87:684–694 (1965)

s+ 2 times
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Davenport-Schinzel sequences

Davenport-Schinzel sequence of order s (over alphabet of size n) is sequence
that does not contain the following:

• . . . i i . . . no two consecutive symbols are the same

• . . . i . . . j . . . i . . . j . . . no alternating subsequence of length s+ 2

s+ 2 times

Example (n = 9, s = 2)

• 6, 4, 5, 6, 1, 2, 2, 7, 3

• 2, 5, 1, 2, 7, 8, 7, 1, 3, 4

• 3, 6, 4, 2, 5, 1, 5, 9, 8, 9, 7
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Davenport-Schinzel sequence of order s (over alphabet of size n) is sequence
that does not contain the following:

• . . . i i . . . no two consecutive symbols are the same

• . . . i . . . j . . . i . . . j . . . no alternating subsequence of length s+ 2

s+ 2 times

Example (n = 9, s = 2)

• 6, 4, 5, 6, 1, 2, 2, 7, 3

• 2, 5, 1, 2, 7, 8, 7, 1, 3, 4

• 3, 6, 4, 2, 5, 1, 5, 9, 8, 9, 7
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Davenport-Schinzel sequences

Davenport-Schinzel sequence of order s (over alphabet of size n) is sequence
that does not contain the following:

• . . . i i . . . no two consecutive symbols are the same

• . . . i . . . j . . . i . . . j . . . no alternating subsequence of length s+ 2

s+ 2 times

Example (n = 9, s = 2)

• 6, 4, 5, 6, 1, 2, 2, 7, 3

• 2, 5, 1, 2, 7, 8, 7, 1, 3, 4

• 3, 6, 4, 2, 5, 1, 5, 9, 8, 9, 7

Exercise: Determine the maximal possible length of a DS-sequence of
order s as a function of n, for s = 1, s = 2, s = 3, . . .
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no symbol can appear twice
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Davenport-Schinzel sequences

Davenport-Schinzel sequence of order s (over alphabet of size n) is sequence
that does not contain the following:

• . . . i i . . . no two consecutive symbols are the same

• . . . i . . . j . . . i . . . j . . . no alternating subsequence of length s+ 2

s+ 2 times

DSs(n) := maximum length of DS-sequence of order s on n symbols

• s = 1:

• s = 2:

=⇒ DS1(n) = npossible sequence: 1, 2, 3, . . . , n
no symbol can appear twice

possible sequence 1, 2, . . . , n− 1, n, n− 1, . . . , 2, 1

=⇒ DS2(n) > 2n− 1

Proof by induction, remove symbol whose first occurrence is last,
plus at most one adjacent symbol:

DS2(n) 6 DS(n− 1) + 2 =⇒ DS2(n) 6 2n− 1
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Davenport-Schinzel sequences

Theorem. DSs(n) is near-linear for any constant s. In particular,

• DS1(n) = n

• DS2(n) = 2n− 1

• DS3(n) = Θ(nα(n))

• DSs(n) = o(n log∗ n) for any fixed constant s

where α(n) is the inverse Ackermann function

α(n) is inverse of Ackermann function A(n), where A(n) = An(n) with:

A1(n) = 2n for n > 1
Ak(1) = 2 for k > 1
Ak(n) = Ak−1(Ak(n− 1)) for k > 2 and n > 2

A(1) = 2, A(2) = 4, A(3) = 16, A(4) = tower of 65536 2’s

α(n) grows slower than super-super-super-super-super-slowly . . .
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Robot Motion Planning

t

s
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Robot Motion Planning

t

1. Transform problem to motion-planning problem for a point-shaped robot
by expanding each obstacle. (Expanded obstacles can intersect!)

2. Decompose free space into “quadrilaterals”

3. Construct motion graph G and compute path from s to t in G

s
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(Substructures in) Arrangements

reachable region of the robot
=

single cell in arrangement induced by a set S of n curves in R2

for other types of robots: in Rd, where d = #(degrees of freedom)
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(Substructures in) Arrangements

S: set of n lines / segments / curves / etc in R2

A(S) = arrangement induced by S
= partitioning of R2 into faces, edges, and vertices induced by S

combinatorial complexity of A(S) = total number of vertices, edges, faces

edge

vertex

face (cell)
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(Substructures in) Arrangements

upper envelope

zone k-level

single cell
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Theorem. Let S be a set of n simple curves such that any two curves
intersect at most s times, where S is a fixed constant. Then the
complexity of the full arrangement A(S) is O(n2).

The Complexity of (Substructures in) Arrangements
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Proof.

Theorem. Let S be a set of n simple curves such that any two curves
intersect at most s times, where S is a fixed constant. Then the
complexity of the full arrangement A(S) is O(n2).

Assume curves are finite.

• number of vertices

• number of edges

• number of faces

The Complexity of (Substructures in) Arrangements
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Proof.

Theorem. Let S be a set of n simple curves such that any two curves
intersect at most s times, where S is a fixed constant. Then the
complexity of the full arrangement A(S) is O(n2).

Assume curves are finite.

• number of vertices

• number of edges

• number of faces

|V | 6 2n+ s ·
(
n
2

)
= O(n2)

The Complexity of (Substructures in) Arrangements
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Theorem. Let S be a set of n simple curves such that any two curves
intersect at most s times, where S is a fixed constant. Then the
complexity of the full arrangement A(S) is O(n2).

Assume curves are finite.

• number of vertices

• number of edges

• number of faces

|V | 6 2n+ s ·
(
n
2

)
= O(n2)

|E| 6 n · (s(n− 1) + 1) = O(n2)

The Complexity of (Substructures in) Arrangements



92

Proof.

Theorem. Let S be a set of n simple curves such that any two curves
intersect at most s times, where S is a fixed constant. Then the
complexity of the full arrangement A(S) is O(n2).

Assume curves are finite.

• number of vertices

• number of edges

• number of faces

|V | 6 2n+ s ·
(
n
2

)
= O(n2)

|E| 6 n · (s(n− 1) + 1) = O(n2)

Euler’s formula:

|V | − |E|+ |F | = 2

The Complexity of (Substructures in) Arrangements
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The Complexity of (Substructures in) Arrangements

Theorem. Let S be a set of n infinite x-monotone curves such that any
two curves intersect at most s times. Then the maximum complexity of
the upper envelope of S is O(DSs(n)).
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The Complexity of (Substructures in) Arrangements

Theorem. Let S be a set of n infinite x-monotone curves such that any
two curves intersect at most s times. Then the maximum complexity of
the upper envelope of S is O(DSs(n)).

Proof.

1

2
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The Complexity of (Substructures in) Arrangements

Theorem. Let S be a set of n infinite x-monotone curves such that any
two curves intersect at most s times. Then the maximum complexity of
the upper envelope of S is O(DSs(n)).

we cannot have alternating
sequence of length s+ 2

=⇒ DS(n, s)-sequence

Proof.

1

2

3

4

1 12 2

3
4

1

alternating sequence of length t
implies t− 1 intersections

i j i
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The Complexity of (Substructures in) Arrangements

Theorem. Let S be a set of n x-monotone curves such that any two
curves intersect at most s times. Then the maximum complexity of the
upper envelope of S is O(DSs+2(n)).
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The Complexity of (Substructures in) Arrangements

Theorem. Let S be a set of n x-monotone curves such that any two
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The Complexity of (Substructures in) Arrangements

Theorem. Let S be a set of n x-monotone curves such that any two
curves intersect at most s times. Then the maximum complexity of the
upper envelope of S is O(DSs+2(n)).

Proof.

alternating sequence of length t
implies t− 1 intersections

i j ji

t− 3
we cannot have alternating
sequence of length s+ 4

=⇒ DS(n, s+ 2)-sequence
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Theorem. Let S be a set of n curves in the plane such that any two
curves intersect at most s times. Then the maximum complexity of a
single cell of A(S) is O(DSs+2(n)).

The Complexity of (Substructures in) Arrangements
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Computing a single cell with RIC?

Input: Set S of n segments in the plane, and a point p

Goal: Compute the face of A(S) containing p

The RIC framework

• S = set of n input objects

• C(S) = set of configurations defined by S

– D(∆) ⊂ S = defining set of ∆ ∈ C(S)
size bounded by fixed constant

– K(∆) ⊂ S = conflict list of ∆ ∈ C(S)

• Goal: Compute Cact(S) =
{∆ ∈ C(S) : D(∆) ⊆ S and K(∆) ∩ S = ∅}

p
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Lazy Randomized Incremental Construction [dB-Dobrindt-Schwarzkopf ’94

Input: Set S of n segments in the plane, and a point p

Goal: Compute the face of A(S) containing p

The RIC framework

• S = set of n input objects

• C(S) = set of configurations defined by S

– D(∆) ⊂ S = defining set of ∆ ∈ C(S)
size bounded by fixed constant

– K(∆) ⊂ S = conflict list of ∆ ∈ C(S)

• Goal: Compute Cact(S) =
{∆ ∈ C(S) : D(∆) ⊆ S and K(∆) ∩ S = ∅}

p

?

segments

trapezoids
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Theorem. Let S be a set of n line segments and let p be a point. Then
the single cell of A(S) defined by p can be computed in O(nα(n) log n)
expected time.

Lazy Randomized Incremental Construction
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Theorem. Let S be a set of n line segments and let p be a point. Then
the single cell of A(S) defined by p can be computed in O(nα(n) log n)
expected time.

• Apply standard RIC approach to construct trapezoidal decomposition of
the whole arrangement.

• After iterations 1, 2, 4, 8, . . . perform a clean-up step.

after 7 iterations

Lazy Randomized Incremental Construction
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the whole arrangement.
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the 8-th iteration

clean-up phase:
remove trapezoids
not in the cell of p
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• Resulting algorithm has same performance bounds as when one could
magically remove cells not in cell of p after each iteration

• Approach can also be formulated using abstract framework

• Can also be used to compute single cell in arrangement of triangles in
R3, of zone of set of hyperplanes in Rd, and more

Lazy Randomized Incremental Construction
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The Complexity of Upper Envelopes

• n monotone curves with at most s intersections per pair

– complexity of upper envelope is near-linear

– infinite curves O(DSs(n)), finite curves O(DSs(n))

• n constant-degree algebraic surfaces in Rd

– complexity of upper envelope is O(nd−1+ε), for any fixed ε > 0

1 2
3 4

1
1

2
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Upper Envelopes: Applications for Moving Ponits

P : set of n points in R2 that move linearly

• How often can the closest pair change, in the worst case?

• How often can the convex hull change, in the worst case?

• How often can the Delaunay triangulation change, in the worst case?
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Upper Envelopes: Applications for Moving Ponits

How often can the closest pair change, in the worst case?

Upper bound

• for each pair p, q define fpq(t) := distance between p and q at time t

• number of changes = complexity of lower envelope of n2 functions

≈ O(n2)
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Upper Envelopes: Applications for Moving Ponits

How often can the convex hull change, in the worst case?

Lower bound



118

Upper Envelopes: Applications for Moving Ponits

How often can the convex hull change, in the worst case?

Lower bound

Ω(n2) changes



119

Upper Envelopes: Applications for Moving Ponits

How often can the convex hull change, in the worst case?

Trivial upper bound
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Upper Envelopes: Applications for Moving Ponits

How often can the convex hull change, in the worst case?

Trivial upper bound

convex hull changes =⇒ three points become collinear

=⇒ happens O(1) times for each triple

=⇒ O(n3) changes to convex hull
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Upper Envelopes: Applications for Moving Ponits

How often can the convex hull change, in the worst case?

A better bound using upper envelopes
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Upper Envelopes: Applications for Moving Ponits

How often can the convex hull change, in the worst case?

A better bound using upper envelopes

• for each point p define function fp : [0, 2π)× R>0 → R

θ

f p
(θ
, t

)

p
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Upper Envelopes: Applications for Moving Ponits

How often can the convex hull change, in the worst case?

A better bound using upper envelopes

• for each point p define function fp : [0, 2π)× R>0 → R

• p is on convex hull at time t iff fp(θ, t) > fq(θ, t) for all q at time t

θ

f p
(θ
, t

)

p
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Upper Envelopes: Applications for Moving Ponits

How often can the convex hull change, in the worst case?

A better bound using upper envelopes

• for each point p define function fp : [0, 2π)× R>0 → R

• p is on convex hull at time t iff fp(θ, t) > fq(θ, t) for all q at time t

• number of changes

= O(complexity of upper envelope of surfaces in R3) = O(n2+ε)

θ

f p
(θ
, t

)

p
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Upper Envelopes: Applications for Moving Ponits

How often can the Delaunay triangulation change, in the worst case?
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Upper Envelopes: Applications for Moving Ponits

How often can the Delaunay triangulation change, in the worst case?

DT changes when convex hull changes =⇒ Ω(n2) changes

Exercises

1. Give a trivial upper bound on the number of changes.

2. Give an improved upper bound using upper envelopes.
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Upper Envelopes: Applications for Moving Ponits

How often can the Delaunay triangulation change, in the worst case?

1. When DT changes, four points become co-circular =⇒ O(n4) changes
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Upper Envelopes: Applications for Moving Ponits

How often can the Delaunay triangulation change, in the worst case?

1. When DT changes, four points become co-circular =⇒ O(n4) changes

2. When convex hull changes, DT changes =⇒ Ω(n2) changes
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Upper Envelopes: Applications for Moving Ponits

How often can the Delaunay triangulation change, in the worst case?

1. When DT changes, four points become co-circular =⇒ O(n4) changes

2. for each pair p, q, and each r, define function f
(r)
pq (t) : R>0 → R

r

p

q
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Upper Envelopes: Applications for Moving Ponits

How often can the Delaunay triangulation change, in the worst case?

1. When DT changes, four points become co-circular =⇒ O(n4) changes

2. for each pair p, q, and each r, define function f
(r)
pq (t) : R>0 → R

r

p

q

p, q, r form triangle in DT: f
(r)
pq (t) < f

(r′)
pq (t) for all r′

number of changes = n2× complexity of lower envelope in R2 ≈ O(n3)

[Rubin ’15; 85 pages]
for linear motions the DT
changes O(n2+ε) times
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Levels in arrangements
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0-level
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Levels in arrangements

1-level
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Levels in arrangements

2-level
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Levels in arrangements

(6 2)-level
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Levels in arrangements

What is the max complexity of the k-level in an arrangement of n lines?

• 0-level = lower envelope =⇒ complexity 6 n

• k > 1: complexity is n2Ω(
√

log k) and O(nk1/3)
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The Clarkson-Shor Technique: Application to (6 k)-levels

What is the max complexity of the (6 k)-level in an arrangement of n lines?
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The Clarkson-Shor Technique: Application to (6 k)-levels

What is the max complexity of the (6 k)-level in an arrangement of n lines?

Clarkson-Shor ’89: Θ(nk)
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Theorem. The max complexity of the (6 k)-level in an arrangement
induced by a set L of n lines in the plane is O(nk).

The Clarkson-Shor Technique: Application to (6 k)-levels
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Theorem. The max complexity of the (6 k)-level in an arrangement
induced by a set L of n lines in the plane is O(nk).

Proof.

Take sample R ⊂ L by picking each line ` ∈ L with probability 1/k.

E
[
complexity of 0-level of R

]
6 E

[
|R|
]

= n/k
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Theorem. The max complexity of the (6 k)-level in an arrangement
induced by a set L of n lines in the plane is O(nk).

Proof.

Take sample R ⊂ L by picking each line ` ∈ L with probability 1/k.

E
[
complexity of 0-level of R

]
6 E

[
|R|
]

= n/k

v

6 k lines

vertex of k-level of L shows up on 0-level of R iff

• both lines defining v are in R

• none of the at most k lines below v are in R

The Clarkson-Shor Technique: Application to (6 k)-levels
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E
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|R|
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= n/k

v

6 k lines

vertex of k-level of L shows up on 0-level of R iff

• both lines defining v are in R

• none of the at most k lines below v are in R

prob >
(

1
k

)2 · (1− 1
k

)k
>
(

1
k

)2 · 1
e
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Theorem. The max complexity of the (6 k)-level in an arrangement
induced by a set L of n lines in the plane is O(nk).

Proof.
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6 k lines

vertex of k-level of L shows up on 0-level of R iff

• both lines defining v are in R

• none of the at most k lines below v are in R

prob >
(

1
k

)2 · (1− 1
k

)k
>
(

1
k

)2 · 1
e

E
[
complexity of 0-level of R

]
> (complexity of k-level in L) ·

(
1
k

)2 · 1
e

The Clarkson-Shor Technique: Application to (6 k)-levels
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Another application: Depth in Disk Arrangements

1 2

2

2

3

1

1

1

Exercises

1. Prove that the total number of vertices on the union boundary is O(n). Hint:
Define a suitable planar graph whose nodes are disk centers.

2. Prove that the total number of regions of depth at most k is O(nk).

4
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Thanks for your attention!

TSP Art by Carig Kaplan and Robert Bosch
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