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Abstract

In this short communication we study a �uid queue with a �nite bu�er. The performance measure we are
interested in is the occupation time over a �nite time period, i.e., the fraction of time the workload process
is below some �xed target level. We construct an alternating sequence of sojourn times D1, U1, . . . where
the pairs (Di, Ui)i∈N are i.i.d. random vectors. We use this sequence to determine the distribution function
of the occupation time in terms of its double transform.
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1 Introduction

Owing to their tractability, the OR literature predominantly focuses on queueing systems with an in�nite
bu�er or storage capacity. In practical applications, however, we typically encounter systems with �nite-
bu�er queues. Often, the in�nite-bu�er queue is used to approximate its �nite-bu�er counterpart, but it is
questionable whether this is justi�ed when the bu�er is not so large.

In speci�c cases explicit analysis of the �nite-bu�er queue is possible. In this paper we consider the
workload process {Q(t)}t≥0 of a �uid queue with �nite workload capacity K > 0. Using the results for the
�uid queue we also analyze the �nite-bu�er M/G/1 queue. The performance measure we are interested in is
the so-called occupation time of the set [0, τ ] up to time t, for some τ ∈ [0,K], de�ned by

α(t) :=

∫ t

0

1{Q(s)∈[0,τ ]}ds.

1



Our interest in the occupation time can be motivated as follows. The queueing literature mostly focuses
on stationary performance measures (e.g. the distribution of the workload Q(t) when t → ∞) or on the
performance after a �nite time (e.g. the distribution ofQ(t) at a �xed time t ≥ 0). Such metrics do not always
provide operators with the right means to assess the service level agreed upon with their clients. Consider for
instance a call center in which the service level is measured over intervals of several hours during the day;
a typical service-level target is then that 80% of the calls should be answered within 20 seconds. Numerical
results for this call center setting [?, ?] show that there is severe �uctuation in the service level, even when
measured over periods of several hours up to a day. Using a stationary measure for the average performance
over a �nite period may thus be highly inadequate (unless the period over which is averaged is long enough).
The fact that the service level �uctuates on such rather long time scales has been observed in the queueing
community only relatively recently (see [?, ?, ?] for some call center and queueing applications). Our work is
among the �rst attempts to study occupation times in �nite-capacity queueing systems.

Whereas there is little literature on occupation times for queues, there is a substantial body of work on oc-
cupation times in a broader setting. One stream of research focuses on occupation times for processes whose
paths can be decomposed into regenerative cycles [?, ?, ?, ?]. Another branch is concerned with occupation
times of spectrally negative Lévy processes, see e.g. [?, ?, ?]. The results established typically concern occupa-
tion times until a �rst passage time, whereas [?] focuses on refracted Lévy processes. In [?] spectrally positive
Lévy processes with re�ection at the in�mum were studied as a special case; we also refer to [?] and references
therein for additional literature. A natural extension of Lévy processes are Markov-modulated Lévy processes;
for the case of a Markov-modulated Brownian motion the occupation time has been analyzed in [?]. To the
best of our knowledge there is no paper on occupation times for doubly re�ected processes, as we consider
here.

In this paper we use the framework studied in [?]. More speci�cally, the occupation time is cast in terms
of an alternating renewal process, whereas for the current setting the upper re�ecting barrier complicates
the analysis. We consider a �nite bu�er �uid queue where during ON times the process increases linearly
and during OFF times the process decreases linearly. We consider the case that ON times have a phase-type
distribution and the OFF times have an exponential distribution. This framework allows us to exploit the
regenerative structure of the workload process and provides the �nite-capacity M/G/1 queue with phase-type
jumps as a limiting special case. For this model we succeed in deriving closed-form results for the Laplace
transform (with respect to t) of the occupation time. Relying on the ideas developed in [?], all quantities of
interest can be explicitly computed as solutions of systems of linear equations.

The structure of the paper is as follows. In Section 2 we describe the model and give some preliminaries.
Our results are presented in Section 3. Some discussion related to computability can be found in Section 4.

2 Model description and preliminaries

We consider the �nite capacity �uid queue with subsequent ON and OFF times. In the �uid queue work
arrives from a source with a linear rate and the source switches between two modes, ON and OFF. The ON
times correspond to time periods in which the source is active, whereas the OFF times correspond to time
periods in which the source is inactive. During the ON times work accumulates at a linear rate depending
on the state of an underlying Markov chain while during OFF times work decreases again with a linear rate.
From the above it follows that OFF times have an exponential distribution and the ON times have a phase-type
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distribution. The workload capacity is K and work that does not �t is rejected; see Subsection ?? for a more
formal description. Some basic results concerning phase-type distributions and martingales that are used in
the sequel are �rst presented in Subsection ??.

2.1 Preliminaries

Phase-type distributions A phase-type distribution B is de�ned as the absorption time of a continuous-
time Markov process {J (t)}t≥0 with �nite state space E ∪ {∂} such that ∂ is an absorbing state and the
states in E are transient. We denote by ~α0 the initial probability distribution of the Markov process, by T

the phase generator, i.e., the |E| × |E| rate matrix between the transient states and by ~t the exit vector, i.e.,
the |E|- dimensional rate vector between the transient states and the absorbing state ∂. The vector ~t can be
equivalently written as −T1, where 1 is a column vector of ones. We denote such a phase-type distribution
by (n, ~α0,T) where |E| = n. The cardinality of the state space E, i.e., n, represents the number of phases of
the phase-type distribution B; for simplicity we assume that E = {1, . . . , n}. In what follows we denote by
B a phase-type distribution with representation (n, ~α0,T); for a phase-type distribution with representation
(n,~ei,T) we add the subscript i in the notation. An important property of the class of phase-type distributions
is that it is dense (in the sense of weak convergence) in the set of all probability distributions on (0,∞); see [?,
Thm. 4.2]. For a phase-type distribution with representation (n, ~α0,T), the cumulative distribution function
B(·), the density b(·) and the Laplace transform B̂[·] are given in [?, Prop. 4.1]. In particular, for x ≥ 0 and
s ≥ 0, we have

P(B > x) = −~α ᵀ
0 e

Tx1 and B̂[s] = ~α ᵀ
0 (sI−T)−1~t. (2.1)

When the phase-type distribution has representation (n,~ei,T) we use the notation B̂i(·) instead of B̂(·). For
a general overview of the theory of phase-type distributions we refer to [?, ?] and references therein.

Markov-additive �uid process (MAFP) Markov-additive �uid processes belong to a more general class
of processes called Markov-additive processes, see [?, Ch. XI]. Consider a right-continuous irreducible Markov
process {J (t)}t≥0 de�ned on a �ltered probability space (Ω,F ,P) with a �nite state space E = {1, . . . , n}
and rate transition matrix Q. While the Markov process J (·) is in state i the process X(·) behaves like a
linear drift ri. We assume that the rates r1, . . . , rn are independent of the process J (·). Letting {Ti, i ≥ 0} be
the jump epochs of the Markov process J (·) (with T0 = 0) we obtain the following expression for the process
X(·),

X(t) = X0 +
∑
m≥1

∑
1≤i≤n

ri (Tm − Tm−1) 1{J (Tm−1)=i,Tm≤t}

+
∑
m≥1

∑
1≤i≤n

ri(t− Tm−1)1{J (Tm−1)=i,Tm−1≤t<Tm}, t ≥ 0 (2.2)

where X0 ∈ F0 and is independent of the Markov process J (·) and the rates r1, . . . , rn. The process X(·)
de�ned in (??) will be referred to as a Markov-additive �uid process and abbreviated as MAFP. For α ∈ CRe≥0,
the matrix exponent of the MAFP is de�ned as

F (α) = Q+ α diag(r1, . . . , rn) = Q+α∆r. (2.3)

In what follows we shall need information concerning the roots of the equation det(F (α)−qI) = det(Q+α∆r−
qI) = 0, where ∆r = diag(r1, . . . , rn) and q ≥ 0. From [?] we have that there exist n values ρ1(q), . . . , ρn(q)
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and corresponding vectors ~h1(q), . . . ,~hn(q) such that, for each k = 1, . . . , n, det(Q+ρk(q)∆r− qI) = 0 and
(Q+ρk(q)∆r − qI)~hk(q) = 0.

The Kella-Whitt martingale The counterpart of the Kella-Whitt martingale for Markov-additive processes
was established in [?]; let {Y (t)}t≥0 be an adapted continuous process having �nite variation on compact
intervals. Set Z(t) = X(t) + Y (t) and let α ∈ CRe≥0. Then, for every initial distribution (X(0),J (0)),

M(α, t) :=

∫ t

0

eαZ(s)~eJ (s)dsF (α) + eαZ(0)~eJ (0) − eαZ(t)~eJ (t) + α

∫ t

0

eαZ(s)~eJ (s)dY (s) (2.4)

is a vector-valued zero mean martingale.

2.2 Fluid model with two re�ecting barriers

The MAFP (X(t),J (t))t≥0 we analyze has a modulating Markov process {J (t)}t≥0 with state space E =

{1, . . . , n+ 1} and generator Q given by

Q =

−λ λ~αᵀ
0

~t T

 , (2.5)

which is a (n + 1) × (n + 1) matrix. Additionally we suppose that λ > 0, ~t is a n × 1 column vector with
negative entries, ~α0 is a n × 1 column vector with entries that sum up to one and T is a n × n matrix with
non-negative entries. The vector ~t and the matrix T are such that each row ofQ sums up to one, alternatively
we can write ~t = −T1. On the event {J (·) = 1} the process X(·) decreases linearly with rate r1 < 0 and on
the event {J (·) = i}, for i = 2, . . . , n+ 1, X(·) increases linearly with rate ri > 0. Such a MAFP decreases
linearly with rate r1 during OFF-times, which are exponentially distributed with parameter λ, and increases
linearly with rates ri during ON-times, which have a phase-type (n, ~α0,T) distribution. Depending on the
state of the modulating process we have a di�erent rate. This model is motivated by �nite capacity systems
with an alternating source: during OFF times work is being served with rate r1 while during ON times work
accumulates with rates r2, . . . , rn+1.

The workload process {Q(t)}t≥0 we are interested in is formally de�ned as a solution to a two sided
Skorokhod problem, i.e., for a Markov-additive �uid process {X(t)}t≥0 as de�ned in (??), we have

Q(t) = Q(0) +X(t) + L(t)− L̄(t). (2.6)

In the above expression {L(t)}t≥0 represents the local time at the in�mum and {L̄(t)}t≥0 the local time at
K . Informally, for t > 0, L(t) is the amount that has to be added to X(t) so that it stays non-negative while
L̄(t) is the amount that has to be subtracted from X(t) + L(t) so that it stays below level K . It is known
that such a triplet exists and is unique, see [?, ?]. For more details we refer to [?] and references therein. For
notational simplicity we assume that Q(0) = τ and that J (0) = 1, i.e., we start with an OFF time; the cases
{Q(0) < τ,J (0) 6= 1} and {Q(0) > τ,J (0) 6= 1} can be dealt with analogously at the expense of more
complicated expressions.

For the MAFP described above the matrix exponent is a (n + 1) × (n + 1) matrix. For q > 0, denote by
ρ1(q), . . . , ρn+1(q) the n+ 1 roots of the equation det(Q+α∆r− qI) = 0 and consider, for k = 1, . . . , n+ 1,
the vectors ~hk(q) = (hk,1(q), . . . , hk,n+1(q)) de�ned by

hk,1(q) = 1 ∀k = 1, . . . , n+1 and hk,j(q) = −~e ᵀ
j (T+ρk(q)∆r−qI)−1~t for j = 2, . . . , n+1, (2.7)
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where ~ej is the unit column vector with 1 at position j, T and ~t are as in (??). For the vectors de�ned in (??)
we have that (Q+ρk(q)∆r − qI)~hk(q) = 0 for all k = 1, . . . , n+ 1.

3 Result

3.1 The Markov Additive Fluid Process

For the analysis of the occupation time α(·) we observe that the workload process {Q(t)}t≥0 alternates be-
tween the two sets [0, τ ] and (τ,K]. Due to the de�nition of {X(t)}t≥0 both upcrossings and downcrossings
of level τ occur with equality. Moreover, we see that an upcrossing of level τ can occur only when the modu-
lating Markov process is in one of the states 2, . . . , n+ 1. Similarly, a downcrossing of level τ can occur only
while the modulating Markov process is in state 1.

We de�ne the following �rst passage times, for τ ≥ 0,

σ := inf
t>0
{t : Q(t) = τ |Q(0) = τ,J (0) = 1}, T := inf

t>0
{t : Q(t) = τ |Q(0) = τ,J (0) 6= 1}.

We use the notation (Ti)i∈N for the sequence of successive downcrossings and (σi)i∈N for the sequence of
successive upcrossings of level τ . An extension of [?, Thms. 1 and 2] for the case of doubly re�ected processes
shows that (Ti)i∈N is a renewal process, and hence the successive sojourn times, D1 := σ1, Di := σi − Ti−1,
for i ≥ 2, and Ui := Ti − σi, for i ≥ 1, are sequences of well de�ned random variables. In addition, Di+1 is
independent of Ui while in generalDi and Ui are dependent. We observe that the random vectors (Di, Ui)i∈N

are i.i.d. and distributed as a generic random vector (D,U). In Figure ?? a realization of Q(·) is depicted.

Q(t)

t

(0,0)

τ

D1 U1 D2

K

Figure 1: The workload process in a �nite capacity �uid queue
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The double transform of the occupation time α(·) in terms of the joint distribution of U and D is given in
[?, Theorem 3.1] which we now restate:

Theorem 3.1. For the transform of the occupation time α(·), and for q ≥ 0, θ ≥ 0, we have∫ ∞
0

e−qt E e−θα(t)dt =
1

1− L1,2(q + θ, q)

[
1− L1(q + θ)

q + θ
+
L1(q + θ)− L1,2(q + θ, q)

q

]
,

where, for θ1, θ2 ≥ 0,

L1,2(θ1, θ2) = E e−θ1D−θ2U and L1(θ1) = L1,2(θ1, 0) = E e−θ1D.

To analyze the occupation time it thus su�ces to determine the joint transform of the random variables
D and U , i.e., L1,2(·, ·). For i = 2, . . . , n + 1 we de�ne the �rst hitting time of level τ with initial condition
(X(0),J (0)) = (τ, i) as follows:

Ti := inf
t≥0
{t : Q(t) = τ |Q(0) = τ,J (0) = i} and wi(θ2) = E

[
e−θ2Ti

]
= E

[
e−θ2T | J (0) = i

]
.

Considering the event Ei that an upcrossing of level τ occurs while the modulating process J (·) is in state i,
for i = 2, . . . , n+ 1, we obtain, for θ1, θ2 ≥ 0,

E
[
e−θ1D−θ2U

]
= E

[
e−θ1σ−θ2T

]
=

n+1∑
i=2

E
[
e−θ1σ1{Ei}

]
E
[
e−θ2T |Ei

]
=

n+1∑
i=2

E
[
e−θ1σ1{Ei}

]
E
[
e−θ2Ti

]
.

(3.1)
In what follows we use, for θ1 ≥ 0 and i = 2, . . . , n+ 1, the notation

zi(θ1) := E
[
e−θ1σ1{Ei}

]
= E

[
e−θ1σ1{J (σ)=i}

]
. (3.2)

It will be shown that these terms can be computed as the solution of a system of linear equations.
The idea of conditioning on the phase when an upcrossing occurs and using the conditional independence

of the corresponding time epochs has been developed in [?]. Determining the factors involved in the terms
presented above is the main contribution of the analysis that follows. We now present the exact expression
for the double transform of the random variables (D,U).

Theorem 3.2. For θ1, θ2 ≥ 0, the joint transform of the random variables D and U is given by

E e−θ1D−θ2U =
1

C(θ2)

n+1∑
i=2

zi(θ1)

n+1∑
j=1

(−1)j+1cj(θ2)e−ρj(θ2)(K−τ)hj,i(θ2), (3.3)

where the quantities cj(θ2), j = 1, . . . , n + 1 and C(θ2) depend only on θ2 and are de�ned below in (??) and
(??); zi(θ1) for i = 2, . . . , n + 1 are determined as the solution of a system of linear equations; this system is
given in (??). The column vectors ~hk(·) for k = 1, . . . , n+ 1 are de�ned in (??).

The outer sum in (??) ranging from 2 to n + 1 represents the conditioning on one of the n + 1 phases of
the modulating Markov process when an upcrossing occurs, that is the event {J (σ) = i}, i = 2, . . . , n + 1.
Observe that an upcrossing of level τ is not possible when J (·) is in state 1 because then the process X(·)
decreases. The terms zi(θ1), as de�ned in (??), denote the transforms of σ on the event the upcrossing of level
τ occurs while the modulating Markov process is in state i, and the inner sum in (??) concerns the transform
of T conditional on the event {J (σ) = i}. The Markov property of the workload process yields that

E
[
e−θ2T |Ei

]
= E

[
e−θ2T | J (σ) = i

]
= E

[
e−θ2T | J (0) = i

]
= wi(θ2). (3.4)
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Proof of Theorem ??. The proof relies on the decomposition given in (??). Below we analyze the two expecta-
tions at the RHS of (??) separately.
◦We determine zi(θ1), for i = 2, . . . , n+ 1, as the solution of a system of linear equations; this idea was

initially developed in [?, Section 5] and essentially relies on the Kella-Whitt martingale for Markov Additive
Processes. The Kella-Whitt martingale for a Markov Additive Process re�ected at the in�mum, has, for all
α ≥ 0, θ1 ≥ 0 and for t ≥ 0, the following form

M(α, t) =

∫ t

0

eαQ(s)−θ1s~eJ (s)ds(Q+α∆r − θ1I) + eατ~eJ (0) − eαQ(t)−θ1t~eJ (t) + α

∫ t

0

e−θ1s~eJ (s)dL(s).

(3.5)
The expression above follows from the general form of the Kella-Whitt martingale given in (??) by considering
the process Y (·) de�ned by Y (t) := τ+L(t)−θ1t/α, for t ≥ 0. This givesZ(t) = τ+X(t)+L(t)−θ1t/α =

Q(t)− θ1t/α. The process Y (·) has paths of bounded variation and is also continuous since the local time at
the in�mum L(·) is a continuous process. Hence, M(α, ·) is a zero-mean martingale. Furthermore, due to the
construction of the model we have that J (0) = 1. Applying the optional sampling theorem for the stopping
time σ, we obtain, for all α ≥ 0,

E
[∫ σ

0

eαQ(s)−θ1s~eJ (s)ds

]
(Q+α∆r − θ1I) = eατ~z(θ1)− eατ~e1 − α~̀(θ1), (3.6)

where

~z(θ1) = E
[
e−θ1σ~eJ (σ)

]
=
(

0,E
[
e−θ1σ1{J (σ)=2}

]
, . . . ,E

[
e−θ1σ1{J (σ)=n+1}

] )
=
(

0, z2(θ1), . . . , zn+1(θ2)
)

and

~̀(θ1) = E
[∫ σ

0

e−θ1s~eJ (s)dL(s)

]
=
(
E
[∫ σ

0

e−θ1s1{J (s)=1}dL(s)

]
, 0, . . . , 0

)
=
(
`(θ1), 0, . . . , 0

)
.

The vector ~̀(θ1) represents the local time at the in�mum up to the stopping time σ; the process Q(·) can hit
level 0 only on the event {J (s) = 1}. Consider the n + 1 roots of the equation det(Q+α∆r − θ1I) = 0,
denoted by ρ1(θ1), . . . , ρn+1(θ1), and the corresponding vectors ~hk(θ1), for k = 1, . . . , n + 1 as de�ned in
(??). Substituting α = ρk(θ1) in (??) and taking the inner products with the vectors ~hk(θ) we obtain, for
k = 1, . . . , n+ 1, the system of equations

eρk(θ1)τ~z(θ1)ᵀ · ~hk(θ1)− eρk(θ1)τ~e ᵀ
1 · ~hk(θ1)− ρk(θ1)~̀(θ1)ᵀ · ~hk(θ1) = 0.

Hence we obtain the following system of n + 1 linear equations and n + 1 unknowns, i.e., zi(θ1) for i =

2, . . . , n+ 1 and `(θ1),

eρk(θ1)τ
n+1∑
j=2

zj(θ1)hk,j(θ1)− eρk(θ1)τ − ρk(θ1)`(θ1) = 0, k = 1, . . . , n+ 1. (3.7)

Solving this system of equations we obtain the zi(θ1), for i = 2, . . . , n+ 1.
◦Next, consider the second expectation in each of the summands at the RHS of (??), i.e., the termwi(θ2) =

E
[
e−θ2T | J (0) = i

]
. This expectation represents the transform of the �rst time the process X(·) hits level τ

given that J (0) = i, for i = 2, . . . , n+ 1. The Kella-Whitt martingale, for a MAFP re�ected at K , has, for all
α ≥ 0, θ2 ≥ 0 and for t ≥ 0, the following form:

MK(α, t) =

∫ t

0

eαQ(s)−θ2s~eJ (s)ds(Q+α∆r−θ2I)+eατ~eJ (0)−eαQ(t)−θ2t~eJ (t)−αeαK
∫ t

0

e−θ2s~eJ (s)dL̄(s).
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The expression above follows from the general form of the Kella-Whitt martingale given in (??) by considering
the process Y (·) de�ned by Y (t) := τ−L̄(t)−θ1t/α, for t ≥ 0. This givesZ(t) = τ+X(t)−L̄(t)−θ1t/α =

Q(t)− θ1t/α. A similar argument as for the stopping time σ and (??) yield the system of equations, for each
i = 2, . . . , n+ 1.

e−ρk(θ2)(K−τ)hk,i(θ2)−e−ρk(θ2)(K−τ)wi(θ2)−ρk(θ2)

n+1∑
j=2

¯̀
j(θ2)hk,j(θ2) = 0 for k = 1, . . . , n+1, (3.8)

where ¯̀
j(θ2) = E

[∫ T
0
e−θ2s1{J (s)=j}dL̄(s)

]
, j = 2, . . . , n + 1. Using the method of determinants we can

write wi(θ2) in the following form:

wi(θ2) = E
[
e−θ2T | J (0) = i

]
=

∑n+1
k=1(−1)1+kck(θ2)e−ρk(θ2)(K−τ)hk,i(θ2)∑n+1

k=1(−1)1+kck(θ2)e−ρk(θ2)(K−τ)
, (3.9)

where, for k = 1, . . . , n+ 1,

ck(θ2) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ρ1(θ2)h1,2(θ2) ρ1(θ2)h1,3(θ2) . . . ρ1(θ2)h1,n+1(θ2)

ρ2(θ2)h2,2(θ2) ρ2(θ2)h2,3(θ2) . . . ρ2(θ2)h2,n+1(θ2)
...

...
...

ρk−1(θ2)hk−1,2(θ2) ρk−1(θ2)hk−1,3(θ2) . . . ρk−1(θ2)hk−1,n+1(θ2)

ρk+1(θ2)hj+1,2(θ2) ρk+1(θ2)hk+1,3(θ2) . . . ρk+1(θ2)hk+1,n+1(θ2)
...

...
...

ρn+1(θ2)hn+1,2(θ2) ρn+1(θ2)hn+1,3(θ2) . . . ρn+1(θ2)hn+1,n+1(θ2)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(3.10)

Denoting

C(θ2) =

n+1∑
k=1

(−1)1+kck(θ2)e−ρk(θ2)(K−τ) (3.11)

and substituting the expression found for wi(θ2) in (??) into (??) yields the result of Theorem ?? with the
zi(θ2), for i = 2, . . . , n+ 1, given by the system of equations in (??).

3.2 The �nite bu�er queue

Using the result of Theorem ?? we can also study the occupation time of the workload process in a �nite-
bu�er queue with phase-type service time distribution. Consider a queue where customers arrive according to
a Poisson process with rate λ and have a phase-type service time distribution with representation (n, ~α0,T).
Moreover, the queue has �nite capacity K and work is served with rate r1. The workload process {Q(t)}t≥0
is modeled using a re�ected compound Poisson process with negative drift r1 < 0 and upward jumps with a
phase type (n, ~α0,T) distribution. Such a process has Laplace exponent equal to

φ(α) = −αr1 − λ+ λB̂[α] = −αr1 − λ+ λ~α ᵀ
0 (αI− T)−1~t, (3.12)

where ~t = −T1. As for the MAFP in Section ?? we determine the joint transform of the random variables U
and D.
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Corollary 3.1. For θ1, θ2 ≥ 0, the joint transform of the random variables D and U for a doubly re�ected
compound Poisson process is given by

E e−θ1D−θ2U =
1

C(θ2)

n+1∑
i=2

zi(θ1)

n+1∑
j=1

(−1)j+1cj(θ2)e−pj(θ2)(K−τ)hj,i(θ2),

where cj(θ2), j = 1, . . . , n + 1 and C(θ2) are as in (??) and (??); zi(θ1) for i = 2, . . . , n + 1 are determined
as the solution of a system of linear equations; this system is given in (??). The di�erence is that the roots ρj(θi),
i = 1, 2, are replaced by the roots of the equation φ(α) = θi, denoted by pj(θi), i = 1, 2. The vectors ~hk(·) for
k = 1, . . . , n+ 1 are de�ned as follows:

hk,1(·) = 1 ∀k = 1, . . . , n+ 1 and hk,j(·) = B̂j [pk(·)] j = 2, . . . , n+ 1.

The result in Corollary ?? can be derived as a limiting case of Theorem ?? by considering a suitable MAFP.
The workload process {Q(t)}t≥0 can be studied as the limit of a MAFP in the following sense. Following the
construction presented in Section ?? we de�ne, for r > 0, the MAFP {Xr(t),J r(t)}t≥0 where the Markov
process has state space E = {1, . . . , n+ 1} and generator Qr given by

Qr =

−λ λ~αᵀ
0

r~t rT

 ,
which is a (n+1)×(n+1) matrix. We also let the positive rates be equal, i.e, r2 = . . . = rn+1 = r and we send
r →∞ later on. The assumptions on λ,~t, ~α0 and T are the same as in Section ??. On the event {J r(·) = 1}
the process Xr(·) decreases with rate r1 < 0 and on the event {J r(·) = i}, for i = 2, . . . , n+ 1, the process
Xr(·) increases with rate r > 0. Such a MAFP decreases linearly with rate r1 during OFF-times, which are
exponentially distributed with parameter λ and increases linearly with rate r during ON-times, which have a
phase-type (n, ~α0, rT) distribution. By multiplying the matrix T with the factor r we see that the resulting
phase-type distribution behaves like a phase-type distribution with representation (n, ~α0,T) divided by r.
Using the representation in (??) we see that letting r →∞ the process (Xr(t),J r(t))t≥0 converges path-wise
to a compound Poisson process with linear rate r1 < 0 and jumps in the upward direction with phase-type
(n, ~α0,T) distribution. The workload process {Qr(t)}t≥0 converges to {Q(t)}t≥0, i.e. a re�ected compound
Poisson process, which follows by the continuity of the re�ection operators with respect to the D1 topology.
Hence the joint transform of D and U is computed by using the result established in Theorem ?? and letting
r →∞.

4 Discussion

In this note we have studied the occupation time of the set [0, τ ] upto time t for the �nite bu�er �uid queue
with phase type ON-times and the M/G/1 queue with phase-type jumps. Essential in our analysis was the joint
transform of the consecutive periods below and above τ , i.e., E e−θ1D−θ2U for θ1 ≥ 0, θ2 ≥ 0. The double
transform of the occupation time uniquely speci�es its distribution, which can be evaluated by numerically
inverting the double transform [?]. Such a procedure has been carried out in [?] for the M/M/s queue, where
an explicit expression for the double transform can be derived. For the current model, the transform is given
implicitly, where for given θ1, θ2 linear equations need to be solved. An interesting topic for further research is
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to evaluate how sensitive the numerical inversion algorithms are when the double transform is given implicitly.
This issue also emerges in [?] where the author studies �rst hitting times for Lévy processes with phase-type
jumps by deriving expressions for their Laplace transform.
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