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Abstract

The mixing time of a simple random walk on a random graph generated according to
the configuration model is known to be of order log n when n is the number of vertices.
In this paper we investigate what happens when the random graph becomes dynamic,
namely, at each unit of time a fraction αn of the edges is randomly relocated. For degree
distributions that converge and have a second moment that is bounded in n, we show that
the mixing time is of order 1/

√
αn, provided limn→∞ αn(log n)2 = ∞. We identify the

sharp asymptotics of the mixing time when we additionally require that limn→∞ αn = 0,
and relate the relevant proportionality constant to the average probability of escape from
the root by a simple random walk on an augmented Galton-Watson tree which is obtained
by takin a Galton-Watson tree whose offspring distribution is the size-biased version of
the limiting degree distribution and attaching to its root another Galton-Watson tree
with the same offspring distribution. Our proofs are based on a randomised stopping time
argument in combination with coupling estimates.
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1 Introduction and results

1.1 Motivation and background

The mixing time of a Markov chain is the time it needs to approach its stationary distribution.
For random walks on finite graphs, the characterisation of the mixing time has been the
subject of intensive study. One of the main motivations is the fact that the mixing time gives
information about the geometry of the graph (see the books by Aldous and Fill [2] and Levin,
Peres and Wilson [20] for an account of the state of the art and for applications).

In the last decade, much attention has been then devoted to the analysis of mixing times
for random walks on finite random graphs. Random graphs are used as models for real-world
networks. Three models have been in the focus of attention: the Erdős-Rényi random graph
by Benjamini, Kozma and Wormald [5], Ding, Lubetzky and Peres [12], Fountoulakis and
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Reed [14], and Nachmias and Peres [26], percolation clusters by Benjamini and Mossel [6],
and the configuration model by Ben-Hamou and Salez [7], Beresticky, Lubetzky, Peres and
Sly [8], Bordenave, Caputo and Salez [11], and Lubetzky and Sly [21].

Many real-world networks are dynamic in nature. It is therefore natural to study random
walks on dynamic finite random graphs. This line of research started By Peres, Stauffer and
Steif in [27], where the authors characterise the mixing time of a simple random walk on
dynamical percolation clusters on a discrete torus. The goal of the present paper is to study
the mixing time of a simple random walk on a dynamic version of the configuration model.

The static configuration model is a random graph with a prescribed degree sequence (pos-
sibly random). It is popular because of its mathematical tractability and its flexibility in
modelling real-world networks (see van der Hofstad [16] for a recent overview). For random
walks on the static configuration model, asymptotics of the mixing time (and related proper-
ties such as the presence of the so-called cutoff phenomenon) have been derived recently. In
particular, under mild assumptions on the degree sequence, guaranteeing that the graph is
an expander with high probability, the mixing time is known to be of order log n, with n the
number of vertices.

In the present paper we consider a discrete-time dynamic version of the configuration
model, where at each unit of time a fraction αn of the edges is sampled and relocated uni-
formly at random.1 Our dynamics preserves the degrees of the vertices. Consequently, when
considering a simple random walk on this dynamic configuration model, its stationary dis-
tribution remains constant over time and the analysis of its mixing time is a well-posed
question. In particular, it is natural to expect that, due to the graph dynamics, the random
walk mixes faster than the log n order known for the static model. In our main theorems
we will make this precise under only mild assumptions. By assuming regularity conditions
on the prescribed degree sequence, stated in Condition 1.1 and Remark 1.2 below, and re-
quiring that limn→∞ αn(log n)2 =∞, we show in Theorem 1.5 below that the mixing time is
of order 1/

√
αn, with high probability in the sense of Definition 1.4 below. Moreover, under

the additional requirement that limn→∞ αn = 0, we obtain in Theorem 1.6 below the sharp
asymptotics of the mixing time, with a prefactor that is related to the escape probability from
the root of a simple random walk on an associated Galton-Watson tree. This link comes from
the fact that the configuration model is locally tree-like.

1.2 Model

For a graph G, we write V (G) to denote the set of vertices of G and E(G) to denote the set of
edges of G. We denote by CMn(dn) the set of all graphs on n vertices with degree sequence

dn = (dn(v))v∈[n], [n] = {1, . . . , n}. (1.1)

The total degree `n =
∑

v∈[n] dn(v) is assumed to be even, so that the total number of edges
mn = `n/2 is integer. The graph need not be simple: it may have self-loops and multiple
edges. To each degree sequence we associate a random graph CMn(dn) ∈ CMn(dn), called
the configuration model. Inspired by Bender and Canfield [4], this model was introduced by
Bollobás [9] to study the number of regular graphs of a given size (see also Bollobás [10]).
Molloy and Reed [24], [25] introduce the configuration model with general prescribed degrees.

We begin by describing how the graph is generated.

Statics. To each vertex v ∈ [n] we associate a set of half edges Wn(v) ⊂ [`n] by letting
s ∈ [`n] be in Wn(i), i ∈ [n], if and only if

∑i−1
j=1 dn(j) < s ≤

∑i
j=1 dn(j). The edges of the

graphs are comprised of pairs of half-edges, and for a half-edge s we say that s is incident to
v ∈ [n] when s ∈Wn(v). An edge e = {s, t} is incident to v ∈ [n] when either s or t is.

1A different dynamic version of the configuration model was considered in the context of graph sampling ;
see [15] and references therein.
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Partitions of an even-sized set A into pairs are called configurations of A, and the set
of all configurations of A is denoted by ConfA. A configuration of [`n] together with a
degree sequence dn identify a graph by taking the configuration to be the edge set of the
graph. We formalize this identification rule via the function Idn : Conf [`n] → CMn(dn),
where V (Idn(η)) = [n] and E(Idn(η)) = η for η ∈ Conf [`n]. Note that different configurations
can map to the same graph.

We denote a uniform random configuration of `n half-edges by Conf[`n]. A configuration
can be drawn uniformly at random from Conf [`n] through the following algorithm:

1. Initialize S = [`n],Conf[`n] = ∅.

2. Pick a half-edge, say s, uniformly at random from S \ {minS}.

3. Update Conf[`n] → Conf[`n] ∪ {{s,minS}} and S → S \ {minS, s}.

4. If S 6= ∅, then continue from step 2. Else return Conf[`n].

A random graph in the configuration model is generated by identifying the resulting con-
figuration with a graph using the map Idn . The above algorithm simulates an exchangeable
process that draws a configuration uniformly at random. At each step, it picks one of the free
(i.e., not yet paired) half-edges (we pick minS in our algorithm) and pairs it with another
half-edge that is chosen uniformly at random from the remaining free half-edges (denoted by
S \{minS}). The order in which we pick the half-edges does not affect the distribution of the
resulting configuration. Note that two half-edges that belong to same vertex can be paired,
which creates a self-loop, or two half-edges that belong to vertices that already have an edge
between them can be paired, which creates multiple edges. However, if the degrees are not too
large (see, in particular, Condition 1.1 below), then the number of self-loops and the number
of multiple edges converge to two independent Poisson random variables (see Janson [18],
[19], and the recent approach by Angel, van der Hofstad and Holmgren [3] based on Stein’s
method, which also gives bounds on the speed of convergence).

Dynamics. Our main object of study is the Random Walk on the Dynamic Configuration
Model (RWDCM). This is a sequence of Markov chains (Mn)n∈N, where each element of the
sequence is a joint Markov chain (Mn

t )t∈N0 = (Xn
t , C

n
t )t∈N0 on the Cartesian product of vertex

set and configuration set, [n] × Conf[`n], parameterized by degree sequences (dn)n∈N and a
sequence of numbers that control the graph dynamics, (kn)n∈N such that 2 ≤ kn ≤ mn = `n/2,
n ∈ N. At each time, the graph identified by the configuration Cnt is denoted by Gnt , i.e.
Gnt := Idn(Cnt ). For a fixed n, a starting configuration ηn and a starting vertex un ∈ [n], the
chain (Mn

t )t∈N0 starts from (Xn
0 , C

n
0 ) = (un, ηn) and proceeds as follows:

1. At each time t ∈ N, pick kn edges from Cnt−1, say Ei = {s2i−1, s2i}, 1 ≤ i ≤ kn, uniformly
at random from all subsets of Cnt−1 of size kn.

2. Generate a random configuration Conf[2kn] = {{i1, i2}, . . . , {i2kn−1, i2kn}} of 2kn half-
edges and set Cnt = Cnt−1 \{E1, . . . , Ekn}∪{{si1 , si2}, . . . , {si2kn−1

, si2kn}}, i.e., we rewire
the edges E1, . . . , Ekn using the configuration model constrained to these edges.

3. Choose a half-edge, say p, from Wn(Xn
t−1) uniformly at random. For q ∈ [`n] such that

{p, q} ∈ Cnt , set Xn
t = x, where x is the vertex such that q ∈Wn(x), i.e., make a random

walk move on Gnt .

The above description can be rephrased as follows: at each time step we pick mn − kn edges
uniformly at random from the set of current edges and generate a random graph from the
configuration model conditioned on those edges that are already present. We first advance the
graph process by rewiring the remaining edges and then make a simple random walk move.
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1.3 Main theorems

Let Un be uniformly distributed on [n]. Then

Dn = dn(Un) (1.2)

is the degree of a random vertex on the graph of size n. Write Pn to denote the law of Un.
Throughout the sequel, we impose the following regularity conditions on (dn)n∈N:

Condition 1.1 (Regularity of degrees). There exists a random variable D such that:

(R1) Dn
d−→ D as n→∞ (convergence in distribution).

(R2) limn→∞ En[D2
n] = E[D2] <∞.

(R3) Pn(Dn ≥ 3) = 1 for all n ∈ N.

Remark 1.2. Conditions (R1) and (R2) ensure that the probability of CMn(dn) being simple
has a strictly positive limit [16]. Condition (R3) ensures that the probability of CMn(dn) being
connected tends to one as shown by  Luczak [22] and Federico and van der Hofstad [13] (see
also [17]).

Let Pnun,ηn denote the probability law of the joint Markov chain Mn
t for a starting vertex

un ∈ [n] and a starting configuration ηn. Define the random walk ε-mixing time

tnmix(ε;un, ηn) = inf
{
t ∈ N0 : ‖Pnun,ηn(Xn

t ∈ ·)− πn(·)‖TV < ε
}
, (1.3)

where πn(v) = dn(v)/`n is the invariant distribution of the simple random walk on a graph
with degree sequence dn.

Remark 1.3. We use the term “mixing time” even though the random walk component is
not Markovian when it is marginalised. However, the term is well-defined because the graph
process does not change the degree sequence. Hence the invariant distribution is the same for
all realisations of the graph process, and the random walk conditioned on a realisation of the
graph process is Markovian.

Note that tnmix(ε;un, ηn) depends on the initial vertex un and the initial configuration ηn.
However, we will only prove statements that hold for typical choices of (un, ηn). To formalise
this, we define

µn = Un × L(Conf[`n]), (1.4)

where Un is the uniform distribution on [n], and L(Conf[`n]) denotes the law of the uniform
random configuration on `n half-edges.

Definition 1.4 (With high probability). A statement that depends on the initial vertex
un and the initial configuration ηn is said to hold with high probability if the µn-measure of
the set of pairs (un, ηn) for which the statement holds tends to 1 as n→∞.

Write
αn = kn/mn, n ∈ N, (1.5)

to denote the proportion of edges involved in the swapping at each time step. Our first
theorem provides an upper and a lower bound on the mixing time.

Theorem 1.5 (Rough asymptotics of mixing time). Suppose that limn→∞ αn(log n)2 =
∞. Then, for every ε > 0, with high probability

[1 + o(1)]

√
2

√
αn

√
log(1/ε) ≤ tnmix(ε;un, ηn) ≤ [1 + o(1)]

2
√

3
√
αn

√
log(1/ε). (1.6)
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Theorem 1.5 identifies the mixing time as being of order 1/
√
αn, but the constants show

a gap. Our second theorem closes this gap when αn ↓ 0, i.e., the dynamics becomes “slow”.
Let PGW denote the law of the Galton-Watson tree with offspring distribution f given by

f(k) =
(k + 1)

E[D]
P(D = k + 1), k ∈ N0, (1.7)

i.e., the size-biased version of the degree distribution D in Condition 1.1. Given a realisation
ω of the tree, consider a simple random walk X = (Xt)t∈N0 on ω starting from the root, and
write Pω to denote its law. Let Rt = |{X0, . . . , Xt}| denote the number of distinct vertices
visited by X up to time t ∈ N0. With the help of the techniques developed by Lyons, Pemantle
and Peres [23], it is shown by Piau [28] that

Pω
(

lim
t→∞

1

t
Rt = a

)
= 1 for PGW-a.e.ω, (1.8)

where a is given by the formula

a = EGW
(

C(ω)

1 + C(ω)

)
, (1.9)

where C(ω) is the effective conductance of ω between the root and infinity. This quantity can
also be characterised as the average escape probability of the simple random walk from the
root of an augmented Galton-Watson tree, which consists of two Galton-Watson trees joined
together at the roots (see Lyons, Pemantle and Peres [23]).

Theorem 1.6 (Sharp asymptotics of mixing time for slow dynamics). Suppose that
limn→∞ αn(log n)2 =∞ and limn→∞ αn = 0. Then, for every ε > 0, with high probability

tnmix(ε;un, ηn) = [1 + o(1)]

√
2/a
√
αn

√
log(1/ε). (1.10)

1.4 Discussion and outline

Discussion. Theorem 1.5 gives us upper and lower bounds on the mixing time when the
dynamics is not too slow: αn � 1/(log n)2. The mixing time is of order 1/

√
αn, which

shows that the dynamics speeds up the mixing significantly. Indeed, the critical regime αn ≈
1/(log n)2, not captured by Theorem 1.5, corresponds to 1/

√
αn ≈ log n, which is the order

of the mixing time found for the static configuration model.
Theorem 1.6 gives the sharp asymptotics of the mixing time in the regime where the

dynamics is slow. The proportionality constant involves a non-trivial constant a ∈ (0, 1)
related to simple random walk on a Galton-Watson tree of which the offspring distribution is
the size biased version of the empirical degree distribution. This link shows, among others,
that the mixing time is controlled by a combination of the transient behaviour of simple
random walk and the spatial behaviour of the configuration model.

Our proofs can be used to extend our theorems in the following directions:

� E(D2) =∞ and limn→∞ αn(log log n)2 =∞;

� (kn)n∈N is random with bounded inverse moment;

� time is continuous and edges are randomly relocated at rate αn;

� mixing time of the joint process of random graph and random walk.
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We will pursue these directions in future work. Another natural follow up is to derive asymp-
totics for the cover time of the random walk. Robust techniques to study cover times on static
random graphs have been developed recently (see Abdullah, Cooper and Frieze [1] and the
references therein).

The mixing time of the graph process and the random walk jointly is clearly larger than
the mixing times of each separately. While the graph process helps the random walk to mix,
the converse is not true, since the graph process does not depend on the random walk. Observe
that once the graph process mixes we have an almost uniform configuration, and hence the
random walk mixes immediately. This observation suggests that if the mixing times of the
graph process and the random walk are not of the same order, then the mixing time of the
joint process will have the same order as the mixing time of the graph process. An upper
bound for this can be obtained by a comparison with a coupon collector’s problem with group
drawings as studied by Stadje [29]. Indeed, the random time at which all the edges are rewired
by the process is a strong stationary time, and has the same distribution as the random time it
takes to collect all coupons when at each unit of time kn coupons are drawn from mn coupons
in the coupon collector’s problem. This upper bound is of the order (`n/kn) log `n, which is of
the same order as log n/αn, and is much larger than the mixing time 1/

√
αn of our random

walk in the case where αn = o(1). This suggests that the random walk mixes much faster
than the graph itself.

Outline. The remainder of this paper is organised as follows. In Section 2 we collect various
preparatory results. In particular, in Section 2 we introduce a key stopping time τn and in
Section 2.1 we state and prove a key proposition (Proposition 2.3 below) giving upper and
lower bounds on the total variation distance defined in (1.3) in terms of the tail probabilities
of τn. This proposition will be one of the main ingredients in the proofs of our main theorems
along with two more ingredients: (1) control on the tails of τn in Section 2.2; (2) a branching
process approximation of the random graph in Section 2.3. Section 3 is devoted to the proofs
of the main theorems. For the proof of Theorem 1.6 we use Proposition 2.3 in combination
with a lemma on the range of a simple random walk on the Galton-Watson with offspring
distribution given in (1.7), and a lemma on the convergence of the escape probability as
n→∞. The latter lemmas are proved in Appendix A.

2 Preparations

We employ a randomized stopping time argument to get an upper bound on the total variation
distance in terms of the distribution function of the randomized stopping time. Before going
into details, we define auxiliary random variables that are needed in our proofs.

Definition 2.1 (Auxiliary random variables). For n ∈ N and t ∈ N, we define:
(a) Y n

t ∈ [`n] is the half-edge chosen by the random walk uniformly at random amongst the
half-edges in Wn(Xn

t−1).
(b) Ent ⊂ Cnt−1 is the set of kn edges chosen uniformly at random amongst all subsets of size
kn of Cnt−1 by the DCM (Dynamic Configuration Model) Markov chain at time t.
(c) Snt = ∪e∈Ent e is the set of 2kn half-edges involved in the rewiring in the DCM Markov
chain at time t.
(d) For u ∈ [n], Nn

t (u) denotes the number of simple edges (non-loop) in Ent incident to u,
and Lnt (u) denotes the number of loops in Ent incident to u.
(e) For u, v ∈ [n] and η ∈ Conf[`n], Nη(u, v) denotes the number of edges between u, v in η (in
case u = v, each loop is counted once).
(f) Znt,i denotes the number of distinct edges traversed by the random walker between time
t− i+ 1, . . . , t, i.e., in the last i steps of a t-step random walk.
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Definition 2.2 (Randomized stopping time). For n ∈ N, let τn to be the first time the
walker moves through a half-edge that was rewired before, that is

τn = inf
{
t ∈ N : Y n

t ∈ ∪ts=1Sns
}
.

2.1 Stopping time decomposition

The main result in this section is the following proposition, in which we give upper and lower
bounds on the total variation distance between the law of Xn

t and its stationary distribution
πn:

Proposition 2.3 (Upper and lower bounds on total variation). For every t ∈ N0,

‖Pnun,ηn(Xn
t ∈ ·)− πn(·)‖TV ≤ Pnun,ηn(τn > t) +O(k−1n ), (2.1)

‖Pnun,ηn(Xn
t ∈ ·)− πn(·)‖TV ≥ Pnun,ηn(τn > t)

∑
v 6∈Bη

n

t (un)

πn(v)−O(k−1n ). (2.2)

We will study Pnun,ηn(τn > t) in Section 2.2, and
∑

v 6∈Bη
n

t (un)
πn(v) in Section 2.3. In

the remainder of this section, we prove preliminary bounds leading up to Proposition 2.3.
In Lemma 2.7, we investigate the probability mass function of the “stopped” random walk
Pnun,ηn(Xn

t = v | τn ≤ t), which will give rise to the O(k−1n ) error term.
By the triangle inequality, for any t ∈ N we get the following bounds for the total variation

distance of Xn
t to its stationary distribution πn:

‖Pnun,ηn(Xn
t ∈ ·)− πn(·)‖TV ≤ ‖Pnun,ηn(Xn

t ∈ ·)− Pnun,ηn(Xn
t ∈ · | τn ≤ t)‖TV

+ ‖Pnun,ηn(Xn
t ∈ · | τn ≤ t)− πn(·)‖TV, (2.3)

‖Pnun,ηn(Xn
t ∈ ·)− πn(·)‖TV ≥ ‖Pnun,ηn(Xn

t ∈ ·)− Pnun,ηn(Xn
t ∈ · | τn ≤ t)‖TV

− ‖Pnun,ηn(Xn
t ∈ · | τn ≤ t)− πn(·)‖TV. (2.4)

Equations (2.3)–(2.4) form the starting point of our analysis. In Lemma 2.6 below, we show
that the second terms in the right-hand side of both inequalities is O(k−1n ). The next lemma
gives an upper bound for the first term:

Lemma 2.4 (Stopped versus unstopped walk: upper bound). Uniformly in t ∈ N,

‖Pnun,ηn(Xn
t ∈ ·)− Pnun,ηn(Xn

t ∈ · | τn ≤ t)‖TV ≤ Pnun,ηn(τn > t). (2.5)

Proof. We start by investigating Pnun,ηn(Xn
t = v). For any un, v ∈ [n], ηn ∈ Conf [`n] and t ∈ N,

by conditioning on τn we can write Pnun,ηn(Xt = v) as follows:

Pnun,ηn(Xn
t = v) = Pnun,ηn(Xn

t = v | τn ≤ t)Pnun,ηn(τn ≤ t)
+ Pnun,ηn(Xn

t = v | τn > t)Pnun,ηn(τn > t)

≥ Pnun,ηn(Xn
t = v | τn ≤ t)Pnun,ηn(τn ≤ t). (2.6)

The lower bound in (2.6) gives us an upper bound for the first term in the right-hand side of
(2.3) and (2.4) as follows:

‖Pnun,ηn(Xt ∈ ·)− Pnun,ηn(Xn
t ∈ · | τn ≤ t)‖TV

=
∑
v∈[n]

[
Pnun,ηn(Xn

t = v | τn ≤ t)− Pnun,ηn(Xn
t = v)

]+
≤
∑
v∈[n]

[
Pnun,ηn(Xn

t = v | τn ≤ t)− Pnun,ηn(Xn
t = v | τn ≤ t)Pnun,ηn(τn ≤ t)

]+
=
(
1− Pnun,ηn(τn ≤ t)

) ∑
v∈[n]

Pnun,ηn(Xn
t = v | τn ≤ t) = Pnun,ηn(τn > t). (2.7)

This proves the claim.

7



Lemma 2.5 (Stopped versus unstopped walk: lower bound). Uniformly in t ∈ N,

‖Pnun,ηn(Xn
t ∈ ·)− Pnun,ηn(Xn

t ∈ · | τn ≤ t)‖TV

≥ Pnun,ηn(τn > t)
∑

v 6∈Bη
n

t (un)

Pnun,ηn(Xn
t = v | τn ≤ t). (2.8)

Proof. Consider v such that dGn0 (un, v) > t, where dG denotes the graph distance on G. Note
that when τn > t, the random walk makes all of its first t moves through the edges that are
present in ηn and since dGn0 (un, v) > t, it cannot reach v by making t moves over the edges in
ηn. Hence Pnun,ηn(Xn

t = v | τn > t) = 0, and so for such v,

Pnun,ηn(Xn
t = v) = Pnun,ηn(Xn

t = v | τn ≤ t)Pnun,ηn(τn ≤ t). (2.9)

Let Bηn

t (u) = {v ∈ [n] : dGn0 (u, v) ≤ t}. Then

‖Pnun,ηn(Xt ∈ ·)− Pnun,ηn(Xn
t ∈ · | τn ≤ t)‖TV (2.10)

=
∑
v∈[n]

[
Pnun,ηn(Xn

t = v | τn ≤ t)− Pnun,ηn(Xn
t = v)

]+
=

∑
v∈Bη

n

t (u)

[
Pnun,ηn(Xn

t = v | τn ≤ t)− Pnun,ηn(Xn
t = v)

]+
+

∑
v 6∈Bη

n

t (u)

[
Pnun,ηn(Xn

t = v | τn ≤ t)− Pnun,ηn(Xn
t = v)

]+
≥

∑
v 6∈Bη

n

t (u)

[
Pnun,ηn(Xn

t = v | τn ≤ t)− Pnun,ηn(Xn
t = v | τn ≤ t)Pnun,ηn(τn ≤ t)

]+
= Pnun,ηn(τn > t)

∑
v 6∈Bη

n

t (u)

Pnun,ηn(Xn
t = v | τn ≤ t), (2.11)

which proves the claim.

Lemma 2.6 (Total variation distance for stopped random walk). For any 0 ≤ t ≤ tn
such that tn = O(α−1n ),

‖Pnun,ηn(Xn
t ∈ · | τn ≤ t)− πn(·)‖TV = O(k−1n ), n→∞. (2.12)

In order to prove Lemma 2.6, we start by proving lower bounds on Pnun,ηn(Xn
t = v | τn ≤ t):

Lemma 2.7 (Lower bound for stopped random walk). Uniformly in v ∈ [n], for t ≤ tn
such that tn = O(α−1n ),

Pnun,ηn(Xn
t = v | τn ≤ t) ≥ πn(v)

[
1−O(k−1n )

]
, n→∞. (2.13)

Proof. Write

Pnun,ηn
(
Xn
t = v | τn ≤ t

)
=

t∑
s=1

Pnun,ηn
(
Xn
t = v | τn = s

)
Pnun,ηn

(
τn = s | τn ≤ t

)
=

t∑
s=1

Pnun,ηn
(
τn = s | τn ≤ t

)
×
∑
w∈[n]

Pnun,ηn
(
Xn
t = v | Xn

s = w, τn = s
)
Pnun,ηn(Xn

s = w | τn = s).

(2.14)
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On the event {τn = s}, define σn,s = sup{0 ≤ t ≤ s : Ys ∈ St}. By conditioning again we have

Pnun,ηn
(
Xn
s = w | τn = s

)
=

∑
x∈[n], η∈Confln

Pnun,ηn
(
Xn
s = w | Xn

s−1 = x,Cnσs,n−1 = η, τn = s
)

× Pnun,ηn
(
Xn
s−1 = x,Cnσs,n−1 = η | τn = s

)
.

(2.15)

Conditional on Cnσs,n−1 = η, let A = {{Ys, p} ∈ η for some p ∈ Wn(w)}, i.e., A is the event
that the half-edge incident to x chosen by the random walk at time s belonged to an edge
between x and w in the configuration η. Then

Pnun,ηn
(
Xn
s = w | Xn

s−1 = x,Cnσs,n−1 = η, τn = s
)

= Pnun,ηn
(
Xn
s = w | A,Xn

s−1 = x,Cnσs,n−1 = η, τn = s
)

× Pnun,ηn
(
A | Xn

s−1 = x,Cnσs,n−1 = η, τn = s
)

+ Pnun,ηn
(
Xn
s = w | Ac, Xn

s−1 = x,Cnσs,n−1 = η, τn = s
)

× Pnun,ηn
(
Ac | Xn

s−1 = x,Cnσs,n−1 = η, τn = s
)
.

(2.16)

Since there are Nη(x,w) edges between x and w in η, and one of them is chosen uniformly at
random among all the edges incident to x by the random walk, we have

Pnun,ηn
(
A | Xn

s−1 = x,Cnσs,n−1 = η, τn = s
)

=
Nη(x,w)

dn(x)
,

Pnun,ηn
(
Ac | Xn

s−1 = x,Cnσs,n−1 = η, τn = s
)

=
dn(x)−Nη(x,w)

dn(x)
.

(2.17)

First consider w 6= x. Note that Nn
σs,n(w) can take values between 1 and dn(w)−Nη(w,w),

and Lnσs,n(w) can take values between 0 and Nη(w,w). Letting k = Nη(w,w) and m′n =
mn−Zs,s−σs,n+1, we obtain the following expression by conditioning on Nn

σs,n(w) and Lnσs,n(w):

Pnun,ηn
(
Xn
s = w | A,Xn

s−1 = x,Cnσs,n−1 = η, τn = s
)

=

dn(w)−2k∑
i=1

k∑
j=0

Pnun,ηn
(
Xn
s = w | Nn

σs,n(w) = i, Lnσs,n(w) = j, A,Xn
s−1 = x,Cnσs,n−1 = η, τn = s

)
× Pnun,ηn

(
Nn
σs,n(w) = i, Lnσs,n(w) = j | A,Xn

s−1 = x,Cnσs,n−1 = η, τn = s
)

=

dn(w)−2k∑
i=1

k∑
j=0

i+ 2j

2kn − 1

(
dn(w)−2k−1

i−1
)(
k
j

)(m′n−dn(w)+k
kn−i−j

)(m′n−1
kn−1

)
=

(dn(w)− 1)
(m′n−2
kn−2

)
+
(m′n−1
kn−1

)
(2kn − 1)

(m′n−1
kn−1

) =
dn(w)(kn − 1)

(2kn − 1)(m′n − 1)
+

m′n − kn
(2kn − 1)(m′n − 1)

,

(2.18)
since

Pnun,ηn
(
Xn
s = w | Nn

σs,n(w) = i, Lnσs,n(w) = j, A,Xn
s−1 = x,Cnσs,n−1 = η, τn = s

)
(2.19)

=
i+ 2j

2kn − 1

and

Pnun,ηn
(
Nn
σs,n(w) = i, Lnσs,n(w) = j | A,Xn

s−1 = x,Cnσs,n−1η, τn = s
)

(2.20)

=

(
dn(w)−2k−1

i−1
)(
k
j

)(m′n−dn(w)+k
kn−i−j

)(m′n−1
kn−1

) .
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On the event Ac ∩ {Y0 ∈ S0}, Nn
0 (w) can take values between 0 and dn(w) − Nη(w,w) and

Ln0 (w) can take values between 0 and Nη(w,w). Hence, as above, we get

Pnun,ηn
(
Xn
s = w | Ac, Xn

s−1 = x,Cnσs,n−1 = η, τn = s
)

=

dn(w)−2k∑
i=0

k∑
j=0

i+ 2j

2kn − 1

(
dn(w)−2k

i

)(
k
j

)(m′n−dn(w)+k−1
kn−i−j−1

)(m′n−1
kn−1

)
=

dn(w)
(m′n−2
kn−2

)
(2kn − 1)

(m′n−1
kn−1

) =
dn(w)(kn − 1)

(2kn − 1)(m′n − 1)
.

(2.21)

Combining (2.16)–(2.21), we get for w 6= x,

Pnun,ηn(Xn
s = w | Xn

s−1 = x,Cnσs,n−1 = η, τn = s)

=
dn(w)(kn − 1)

(2kn − 1)(m′n − 1)
+
Nη(x,w)

dn(x)

m′n − kn
(2kn − 1)(m′n − 1)

.
(2.22)

Doing the same calculations for x = w, we get

Pnun,ηn
(
Xn
s = w | Xn

s−1 = w,Cnσs,n−1 = η, τn = s
)

=
(dn(w)− 1)(kn − 1)

(2kn − 1)(m′n − 1)
+

2Nη(w,w)

dn(w)

m′n − kn
(2kn − 1)(m′n − 1)

.
(2.23)

Recalling that πn(w) = dn(w)/`n and mn ≥ m′n, we get for any w, x ∈ [n],

Pnun,ηn
(
Xn
s = w | Xn

s−1 = x,Cnσs,n−1 = η, τn = s
)
≥ πn(w)

[
1−O(k−1n )

]
, (2.24)

where the error term O(k−1n ) is uniform in w, x ∈ [n] and η ∈ Conf [`n]. Since this result holds
for any x ∈ [n] and η ∈ Confln , it follows from (2.15) that

Pnun,ηn
(
Xn
s = w | τn = s

)
≥

∑
x∈[n], η∈Confln

πn(w)
[
1−O(k−1n )

]
× Pnun,ηn(Xn

s−1 = x,Cnσs,n−1 = η | τn = s)

= πn(w)
[
1−O(k−1n )

]
.

(2.25)

Inserting this into (2.14) and using the stationarity of πn, we obtain (2.13).

Proof of Lemma 2.6. By (2.13),

‖Pnun,ηn(Xn
t ∈ · | τn ≤ t)− πn(·)‖TV =

∑
v∈[n]

[
πn(v)− Pnun,ηn(Xn

t = v | τn ≤ t)
]+

(2.26)

≤
∑
v∈[n]

[
πn(v)− (1−O(k−1n ))πn(v)

]+
= O(k−1n )

∑
v∈[n]

πn(v) = O(k−1n ).

Proof of Proposition 2.3. This is immediate from (2.3)–(2.4) combined with Lemmas 2.4, 2.5
and 2.6.
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2.2 Tail probabilities for τn

In this section, we give an explicit formula for the tail probability Pnun,ηn(τn > tn) in terms
of the range of the random walk on the configuration model. Let Znt,i denote the number of

distinct edges in the last i steps of the simple random walk (X̂n
s )ts=0 on the initial graph Gn0 .

In terms of this quantity, we can identify Pnun,ηn(τn > tn) as follows:

Lemma 2.8 (Tail probability of τn in terms of range). For all tn = o(α−1n ),

Pnun,ηn(τn > tn) = Ên
[
(1− αn)

∑tn
i=1 Z

n
tn,i

]
+ o(1), (2.27)

where Ê denotes expectation with respect to the law of simple random walk on Gn0 .

Proof. On the event {τn > tn}, the first tn steps of the random walk are confined to edges in
ηn and so, conditioning on the sample path of the random walk, we get

Pnun,ηn(τn > tn) (2.28)

=
∑

e1,...,etn∈
←→
ηn

Pnun,ηn
(
τn > tn, Y0 = e−1 , Y1 = e+1 , . . . , Ytn−1 = e+tn−1

, Ytn = e+tn
)

=
∑

e1,...,etn∈
←→
ηn

Pnun,ηn
(
e′i 6∈ ∪ij=1Ej , 1 ≤ i ≤ tn, Y0 = e−1 , Y1 = e+1 , . . . , Ytn−1 = e+tn−1

, Ytn = e+tn
)

=
∑

e1,...,etn∈
←→
ηn

Pnun,ηn
(
Y0 = e−1 , Y1 = e+1 , . . . , Ytn−1 = e+tn−1

, Ytn = e+tn |e
′
i 6∈ ∪ij=1Ej , 1 ≤ i ≤ tn

)
× Pnun,ηn

(
e′i 6∈ ∪ij=1Ej , 1 ≤ i ≤ tn

)
,

where, for a given configuration η, ←→η denotes the set of oriented edges in which every edge
in η occurs in both directions and, for e ∈ ←→η , e−, e+ denotes the head and the tail of the
oriented edge, respectively, and e′ denotes the unoriented version of e.

The event {e′i 6∈ ∪ij=1Ej , 1 ≤ i ≤ tn} can be rewritten as {e′j 6∈ Ei, 1 ≤ i ≤ j ≤ tn}. Define
ztn,i = ztn,i(e

′
1, . . . , e

′
tn) to be the number of distinct edges amongst e′tn−i+1, . . . , e

′
tn , i.e., the

last i edges of the path. Then, for 1 ≤ i < tn,

Pnun,ηn
(
e′j 6∈ Ei+1, i < j ≤ tn | e′k 6∈ El, 1 ≤ l ≤ i, l ≤ k ≤ tn

)
=

(mn−ztn,tn−i
kn

)(
mn
kn

) , (2.29)

which gives, after rearrangement of terms,

Pnun,ηn
(
ei 6∈ ∪ij=1Ej , 1 ≤ i ≤ tn

)
(2.30)

=

tn∏
i=1

(mn−ztn,tn−i+1

kn

)(
mn
kn

) =

tn∏
i=1

(mn−ztn,i
kn

)(
mn
kn

)
=

tn∏
i=1

ztn,i−1∏
j=0

(
1− kn

mn − j

)
=

tn∏
i=1

ztn,i−1∏
j=0

(
1− kn

mn
+O

(
knj

m2
n

))
.

Note that 1 ≤ ztn,i ≤ i for all i ≤ tn. Since, by assumption, tn = o(α−1n ), we obtain

Pnun,ηn
(
e′i 6∈ ∪ij=1Ej , 1 ≤ i ≤ tn

)
=

tn∏
i=1

[
(1− αn)ztn,i + o(k−1n )

]
. (2.31)

We note that α−1n = o(kn) because α−1n = o((log n)2), and so tn = o(kn) and hence

Pnun,ηn
(
e′i 6∈ ∪ij=1Ej , 1 ≤ i ≤ tn

)
=

tn∏
i=1

(1− αn)ztn,i + o(1). (2.32)
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On the other hand, note that

Pnun,ηn
(
Y0 = e−1 , Y1 = e+1 , . . . , Ytn−1 = e+tn−1

, Ytn = e+tn | e
′
i 6∈ ∪ij=1Ej , 1 ≤ i ≤ tn

)
(2.33)

= 1
dn(e

−
1 )

1
dn(e

−
2 )
× · · · × 1

dn(e
−
tn

)
,

so that (2.28) can be rewritten as

Pnun,ηn(τn > tn) =
∑

e1,...,etn∈ηn

tn∏
i=1

(1− αn)ztn,i

dn(e−i )
+ o(1). (2.34)

Now let X̂n = (X̂n
t )t≥0 be simple random walk on Gn0 = Idn(ηn) starting from the vertex

un, Znt,i the number of distinct edges traversed by this random walk at times t− i+ 1, . . . , t,

and Ên expectation under the law of this random walk. With this notation in hand, the tail
probability we are interested in can be written as

Pnun,ηn(τn > tn) = Ên
[
(1− αn)

∑tn
i=1 Z

n
tn,i

]
) + o(1), (2.35)

which completes the proof of Lemma 2.8.

2.3 Branching process approximations of configuration model intrinsic balls

In this section, we establish branching process approximations to the intrinsic balls in the
configuration model. We start by showing that limn→∞ πn(Bηn

t (un)) = 0 for µn with high
probability. Define

νn =
E[Dn(Dn − 1)]

E[Dn]
. (2.36)

Lemma 2.9 (Bound on intrinsic ball). Subject to Condition 1.1, for any ε > 0 and all
tn = O(log n), there exists a constant C > 0 such that

µn

(
πn(Bηn

tn (un)) > ε
)
≤ Cν

tn
n

nε
. (2.37)

In particular,

µn

( ∑
v∈Bη

n

tn
(un)

dn(v) > nεE(Dn)

)
≤ Cν

tn
n

nε
. (2.38)

Proof. Letting PnCM to denote the law of configuration model CMn(dn) and EnCM associated
expectation, we note that

Eµn
[
πn(Bηn

tn (u))
]

= Eµn
[ ∑
v∈Bη

n

tn
(u)

dn(v)

`n

]
=

1

n

∑
u∈[n]

EnCM

[ ∑
v∈Bη

n

tn
(u)

dn(v)

`n

]

=
1

n

∑
u,v∈[n]

dn(v)

`n
PnCM(dnCM(u, v) ≤ tn), (2.39)

where the first expectation is with respect to the measure µn and dnCM denotes the graph
distance in CMn(dn). Note that v ∈ Bηn

tn (u) precisely when there exists a path in the config-
uration model containing at most tn edges. Let m ∈ [tn], and let (γi)

m
i=0 denote a path in [n].

Thus, γ0 = u, γm = v and γi ∈ [n] for i ∈ [tn − 1], and all γi are distinct. Then

PnCM(dCM(u, v) ≤ tn) ≤
tn∑
m=1

∑
γ1,...,γm−1∈[n]

PnCM

(
(γi−1, γi) ∈ E(CMn(dn)) ∀ i ∈ [tn−1]

)
. (2.40)
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Now,

PnCM

(
(γi−1, γi) ∈ E(CMn(dn)) ∀ i ∈ [tn − 1]

)
≤ dn(γ0)dn(γm)

m−1∏
i=1

dn(γi)(dn(γi)− 1)

m∏
i=1

1

`n − 2i+ 1
,

(2.41)

since the product involving dn overcounts the sequences of half-edges that can form the edges
required, and

∏m
i=1

1
`n−2i+1 is the probability that any sequence of such half-edges are paired.

We obtain, by Markov’s inequality,

µn

(
πn(Bηn

tn (u)) > ε
)

(2.42)

≤ 1

nε

∑
u,v∈[n]

dn(u)dn(v)2

`n

tn∑
m=1

( ∑
w∈[n]

dn(w)(dn(w)− 1)
)m−1 m∏

i=1

1

`n − 2i+ 1

=
1

`nnε

∑
v∈[n]

dn(v)2
tn∑
m=1

νm−1n

m∏
i=1

`n
`n − 2i+ 1

.

By (R1) and (R2) in Condition 1.1,

`n
n

= En[Dn]→ E[D] <∞, 1

n

∑
v∈[n]

dn(v)2 → E[D2] <∞. (2.43)

Hence supn∈N En[D2
n]/En[Dn] = C <∞ and, since tn = O(log n),

m∏
i=1

`n
`n − 2i+ 1

= 1 +O(t2n/`n) = 1 + o(1). (2.44)

We conclude that µn(πn(Bηn

tn (u)) > ε) ≤ Cνtnn /(nε), as required.

We next relate the neighborhood Bηn

tn (un) to a branching process where the root has
offspring distribution Dn, while all other individuals have offspring distribution D?

n − 1, with

P(D?
n = k) =

k

E[Dn]
P(Dn = k), k ∈ N (2.45)

is the size-biased distribution of Dn. Denote this branching process by (BPn(t))t∈N0 . Here,
BPn(t) denotes the branching process when it contains precisely t vertices, and we explore it in
the breadth-first order. We let (Gn(t))t∈N0 denote the same quantity for the graph exploration.
In particular, from (Gn(t))t∈N0 we can retrieve (Bηn

t (u))t∈N0 , where Dn = dn(u). The following
lemma proves that we can couple the graph exploration to the branching process in such a
way that (Gn(t))0≤t≤Tn is equal to (BPn(t))0≤t≤Tn when Tn = o(

√
n). In the statement, we

write (Ĝn(t), B̂Pn(t))t∈N0 for the coupling of (Gn(t))0≤t≤Tn and (BPn(t))0≤t≤Tn .

Lemma 2.10 (Coupling graph exploration and branching process). Subject to Condi-

tion 1.1, there exists a coupling (Ĝn(t), B̂Pn(t))t∈N0 of (Gn(t))0≤t≤Tn and (BPn(t))0≤t≤Tn such
that

P
(

(Ĝn(t))0≤t≤Tn 6= (B̂Pn(t))0≤t≤Tn

)
= o(1), (2.46)

whenever Tn = o(
√
n).

Proof. We let the offspring of the root of the branching process D̂n be equal to dn(û), which
is the number of neighbours of the vertex û ∈ [n] that is chosen uniformly at random. By
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construction, D̂n = dn(û), so that also Ĝn(1) = B̂Pn(1). We next explain how to jointly

construct (Ĝn(t), B̂Pn(t))0≤t≤T given that we have already constructed (Ĝn(t), B̂Pn(t))0≤t≤T−1.

To obtain (Ĝn(t)0≤t≤T , we take the first unpaired half-edge pT . This half-edge needs to be
paired to a uniform half-edge that has not been paired so far. We draw a uniform half-edge
qT from the collection of all half-edges, independently of the past, and we let the (T − 1)-st

individual in (B̂Pn(t))0≤t≤T−1 have precisely dn(UT )− 1 children. Note that dn(UT )− 1 has
the same distribution as D?

n − 1 and, by construction, the collection
(
dn(Ut) − 1

)
t∈N is i.i.d.

When qT is still free, i.e., has not yet been paired in (Ĝn(t))0≤t≤T−1, then we also let pT be

paired to qT , and we have constructed (Ĝn(t))0≤t≤T . However, a problem arises when qT has

already been paired in (Ĝn(t))0≤t≤T−1, in which case we draw a uniform unpaired half-edge

q′T and pair pT to q′T instead. Clearly, this might give rise to a difference between (Ĝn(t))t≤T
and (B̂Pn(t))0≤t≤T . We now provide bounds on the probability that an error occurs before
time Tn.

There are two sources of differences between (Ĝn(t))t∈N00 and (B̂Pn(t))t∈N0 :

Half-edge re-use. In the above coupling qT had already been paired and is being re-used in
the branching process, and we need to redraw q′T ;

Vertex re-use. In the above coupling, this means that qT is a half-edge that has not yet been
paired in (Ĝn(t))0≤t≤T−1, but it is incident to a half-edge that has already been paired

in (Ĝn(t))0≤t≤T−1. In particular, the vertex to which it is incident has already appeared

in (Ĝn(t))0≤t≤T−1 and it is being re-used in the branching process. In this case, a copy

of the vertex appears in (B̂Pn(t))0≤t≤T , while a cycle appears in (Ĝn(t))0≤t≤T .

We now provide a bound on both contributions:

Half-edge re-use. Up to time T − 1, at most 2T − 1 half-edges are forbidden to be used
by (Ĝn(t)t≤T ). The probability that the half-edge qT equals one of these two half-edges is at
most

2T − 1

`n
. (2.47)

Hence the probability that a half-edge is being re-used before time Tn is at most

Tn∑
T=1

2T − 1

`n
=
T 2
n

`n
= o(1), (2.48)

since Tn = o(
√
n).

Vertex re-use. The probability that vertex i is chosen in the T -th draw is equal to di/`n.
The probability that vertex i is drawn twice before time Tn is at most

Tn(Tn − 1)

2

d2i
`2n
. (2.49)

By the union bound, the probability that there exists a vertex that is chosen twice up to time
Tn is at most

Tn(Tn − 1)

2`n

∑
i∈[n]

d2i
`n

= o(1), (2.50)

by Condition 1.1 because Tn = o(
√
n).
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3 Proof of main theorems

Proof of lower bound in Theorem 1.5. We use (2.2) in Proposition 2.3 for t = tn and
write ∑

v 6∈Bη
n

tn
(un)

πn(v) = 1−
∑

v∈Bη
n

tn
(un)

πn(v). (3.1)

This leads to

‖Pnun,ηn(Xn
tn ∈ ·)− πn(·)‖TV ≥ Pnun,ηn(τn > tn)−

∑
v∈Bη

n

tn
(un)

πn(v)−O(k−1n ). (3.2)

Lemma 2.9 together with tn = O(1/
√
αn) = o(log n) shows that, for any 0 < δ < 1,∑

v∈Bη
n

tn
(un)

πn(v) ≤ n−δ (3.3)

with µn-probability at least 1−C ′nδ−1+o(1) for some constant C ′ <∞. It remains to prove a
lower bound on Pnun,ηn(τn > tn). We use Lemma 2.8 and prove an upper bound on the random
walk range functional appearing in the exponent. A trivial upper bound for Zntn,i is i, so that

(1− αn)
∑tn
i=1 Z

n
tn,i ≥ (1− αn)(tn+1)2/2. (3.4)

Since all other terms in the lower bound are o(1) independently of the constant c in tn =
c/
√
αn, we obtain that tnmix(ε;un, ηn) ≥ tn, where tn is such that (1− αn)(tn+1)2/2 ≤ ε. This

gives that 1
2(tn + 1)2 ≥ (1/αn) log(1/ε), as claimed.

Proof of upper bound in Theorem 1.5. We now use (2.1) in Proposition 2.3 for t = tn,
to see that it suffices to analyse Pnun,ηn(τn > tn). We again use Lemma 2.8, to see that

‖Pnun,ηn(Xn
tn ∈ ·)− πn(·)‖TV ≤ Ên

[
(1− αn)

∑tn
i=1 Z

n
tn,i

]
+ o(1). (3.5)

Note that Ztn,i is monotone increasing in i, so that

tn∑
i=1

Zntn,i ≥
tn∑

i=btn/2c

Zntn,i ≥
1
2 tn Z

n
tn,btn/2c. (3.6)

We can bound this last term by

Zntn,btn/2c ≥ dCM(X̂n
tn , X̂

n
btn/2c). (3.7)

Next, we use the comparison with the branching processes in Lemma 2.10. We note that,
with Sn(t) denoting the total number of individuals in generations 1 up to t,

EBPn [Sn(tn)] =
`n
n
νtnn = no(1), (3.8)

since tn = o(log n). Therefore, with high probability, Sn(tn) = o(
√
n), and hence the family

tree of the branching process up to generation tn and Bηn

tn (u) agree. With probability 1,

(X̂n
t )0≤t≤tn does not leave the ball of radius tn, so the random walk agrees with a random

walk on a tree.
Next, we start the random walk from X̂n

btn/2c and run it up to time tn. Bηn

tn (u) is a tree and

by (R3) in Condition 1.1, wherever the random walk is, at least 2 of the neighbouring vertices
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are further away from X̂n
btn/2c than the present location, and only one is closer by. Thus, we

can stochastically bound dnCM(X̂n
tn , X̂

n
btn/2c) from below by 2Ydtn/2e − dtn/2e, where Yt has a

binomial distribution with t trials and success probability 2
3 . Thus, with high probability, and

for every ζ > 0,
dCM(X̂n

tn , X̂
n
btn/2c) ≥ (13 − ζ)(tn/2). (3.9)

We conclude that, with high probability,

Zntn,btn/2c ≥ (13 − ζ)(tn/2)2, (3.10)

so that

‖Pnun,ηn(Xn
tn ∈ ·)− πn(·)‖TV ≤ Ên

[
(1− αn)

∑tn
i=1 Z

n
tn,i

]
+ o(1) (3.11)

≤ (1− αn)(
1
3−ζ)(tn/2)

2

+ o(1) ≤ ε,

when (tn/2)2(13 −ζ) ≥ (1/αn) log(1/ε). This proves the upper bound for any constant exceed-

ing 2
√

3/
√

1− 3ζ. Since ζ > 0 is arbitrary, we get the claim.

Proof of Theorem 1.6. We rely on the range property of simple random walk on a Galton-
Watson tree derived in the appendix. Let PGWn be the law of the Galton-Watson tree ω whose
offspring distribution is the size-biased version of the law of Dn (recall (1.2) and (1.7)). By

Lemma A.1, we have that, for any δ > 0 with PGWn -probability at least 1−O(t
−1/2
n ),

Eω
[
(1− αn)

∑tn
i=1 Ztn,i

]
≥ (1− αn)(1+δ)ant

2
n/2 +O(t−1/2n ), (3.12)

and
Eω
[
(1− αn)

∑tn
i=1 Ztn,i

]
≤ (1− αn)(1−δ)ant

2
n/2 +O(t−1/2n ), (3.13)

where an is the average escape probability from the root by the simple random walk.
Recall that in Lemma 2.10 we coupled the neighbourhood Bηn

tn (un) to the first tn levels of
the family tree of a branching process in which the root had offspring distribution Dn while
the other vertices had offspring distribution D∗n − 1, one less than the size biased version of
Dn. In order to make use of the bounds given in (3.12),(3.13), we argue that they hold also for
the distribution of the family tree of that branching process. Indeed, since Dn is stochastically
dominated by D∗n [16, Chapter 2], we can couple the family tree of the branching process, say
ω with root ρ, and the Galton-Watson tree with offspring distribution D∗n at the root and
D∗n − 1 everywhere else, say ω′ with root ρ′, in such a way that ω is a rooted subtree of ω′

and ρ coincides with ρ′ almost surely. Now, since the simple random walk on ω′ is transient
a.s., it will be confined to ω with a positive probability and any statement that holds for the
random walk on ω′ will hold with high probability for the random walk on ω′ conditioned on
not leaving ω. Following Remark A.2, we see that the bounds hold also for the random walk
on the family tree of the branching process used in Lemma 2.10.

Upon successful coupling of the simple random walk on Gn0 starting from a uniformly
chosen vertex and the simple random walk on the family tree of the branching process starting
from the root, which occurs with high probability according to Lemma 2.10, we have

Ên
[
(1− αn)

∑tn
i=1 Ztn,i

]
= Eω

[
(1− αn)

∑tn
i=1 Ztn,i

]
(3.14)

and hence, by Lemma 2.8 with high probability,

Pnun,ηn(τn > tn) = Eω
[
(1− αn)

∑tn
i=1 Ztn,i

]
+ o(1). (3.15)
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Combining (3.15) with (3.12) and (3.13), we find that for any δ > 0, with high probability,

(1− αn)(1+δ)ant
2
n/2 + o(1) ≤ Pnun,ηn(τn > tn) ≤ (1− αn)(1−δ)ant

2
n/2 + o(1). (3.16)

Finally, fix δ > 0 and define

tn(±)2 = (1± δ) 2

anαn
log(1/ε). (3.17)

As shown in Lemma A.3, limn→∞ an = a with a the escape probability defined in (1.9).
Combining Lemma 2.4 and the upper bound in (3.16), we have with high probability,

‖Pnun,ηn(Xn
tn(+) ∈ ·)− πn(·)‖TV ≤ ε. (3.18)

Combining Lemma 2.5, Lemma 2.9 and the lower bound in (3.16), we have with high proba-
bility,

‖Pnun,ηn(Xn
tn(−) ∈ ·)− πn(·)‖TV ≥ ε. (3.19)

Letting δ ↓ 0, we obtain the desired result.

A Simple random walk on a Galton–Watson tree

A.1 Range

Let Ω denote the set of rooted locally finite trees. Let PGW denote the law on Ω induced by
the Galton-Watson tree with a given offspring distribution with support N \ {1}. For a given
tree ω ∈ Ω, let Pω denote the law of the simple random walk on ω (“quenched law”), and
define

PGW(·) =

∫
Pω(·)PGW(dω) (A.1)

(“annealed law”). Write Rt to denote the number of distinct vertices visited by the random
walk up to time t. Piau [28] shows that there exists a constant a (depending on the offspring
distribution of the Galton-Watson tree) and a constant c (not depending on the offspring
distribution), such that

EGW(Rt) = at+O(1), VarGW(Rt) ≤ ct. (A.2)

Here VarGW(X) denotes the variance of the random variable X under the law of the Galton-
Watson tree. Letting Rt,i denote the number of distinct vertices visited by the random walk
between time (t − i + 1) and time t, and using the same regeneration time arguments as by
Piau [28], we get

EGW(Rt,i) = ai+O(1), VarGW(Rt,i) ≤ ci, (A.3)

from which it follows that, for δ > 0,

PGW
(∣∣∣∣Rt,ii − a

∣∣∣∣ > δ

)
= O(i−1). (A.4)

This in turn implies that, with 1−O(i−1/2) probability under the PGW-measure,

Pω
(∣∣∣∣Rt,ii − a

∣∣∣∣ ≤ δ) = 1−O(i−1/2). (A.5)

The latter is the crucial ingredient in the proof of the following lemma.
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Lemma A.1 (Range asymptotics). Let PGWn denote the law of the Galton-Watson tree whose
offspring distribution is the size-biased version of the degree distribution Dn (recall (1.2) and
(1.7)). Let Zt,i denote the number of distinct edges visited during the last i steps of the simple
random walk on the tree. For any δ > 0 and any tn → ∞, with PGWn -probability at least

1−O(t
−1/2
n ) as n→∞,

Pω

(∣∣∣∣∣ 1

t2n

tn∑
i=1

Ztn,i −
an
2

∣∣∣∣∣ ≤ δ
)

= 1−O(t−1/2n ). (A.6)

Proof. First note that, since the simple random walk lives on a tree, we have Ztn,i = Rtn,i−1.
The result follows from monotonicity of i 7→ Ztn,i, as well as a decomposition into finitely
many pieces. Indeed, let M ∈ N, ik = kd tnM e, jk = kb tnM c, k = 0, . . . ,M − 1. By monotonicity,

Ztn,jk−1
≤ Ztn,i ≤ Ztn,ik , jk−1 ≤ i ≤ ik, (A.7)

and so with PGWn -probability at most O(t
−1/2
n ) we have

Pω

(
1

t2n

tn∑
i=1

Ztn,i < (1− δ)an
2

)
≤ Pω

(
1

t2n

M−1∑
k=1

⌊
tn
M

⌋
Ztn,jk < (1− δ)an

2

)
(A.8)

≤ Pω

(
1

t2n

M−1∑
k=1

k

⌊
tn
M

⌋2 Ztn,jk
jk

< (1− δ)an
2

)
≤

M−1∑
k=1

Pω
(
Ztn,jk
jk

< (1− δ′)an
)

= O(t−1/2n ),

where δ′ > 0 is a fixed number such that M(M − 1)(1 − δ′)/(M + 1)2 > 1 − δ, and the last
line follows from (A.5) and the fact that M is finite. Similarly, for the upper bound, with

PGWn -probability at most O(t
−1/2
n ) we have

Pω

(
1

t2n

tn∑
i=1

Ztn,i > (1 + δ)
an
2

)
≤ Pω

(
1

t2n

M∑
k=1

⌈
tn
M

⌉
Ztn,ik > (1 + δ)

an
2

)
(A.9)

≤ Pω

(
1

t2n

M∑
k=1

k

⌈
tn
M

⌉2 Ztn,ik
jk

> (1 + δ)
an
2

)
≤

M∑
k=1

Pω
(
Ztn,jk
jk

> (1 + δ′)an

)
= O(t−1/2n ).

Remark A.2. This result holds also for the augmented Galton-Watson tree as defined by
Lyons, Pemantle and Peres [23] that is formed by taking a Galton-Watson tree and attaching
to its root another Galton-Watson tree with the same offspring distribution. This construction
coincides with modifying the offspring distribution of the root so that it has one more child.
For both cases the constant a in (A.2) is the same.

A.2 Escape probability

Lemma A.3 (Convergence of escape probability). limn→∞ an = a, where a is as defined in
(1.9) and an is the analogous quantity for PGWn .

Proof. Write ωn to denote the random graph generated according to PGWn . The effective
conductance on ωn between 0 and infinity is given by the Dirichlet principle:

Cn = inf
f : Vn→[0,1]

f(0)=1,f(∞)=0

∑
e∈En

|∇f(e)|2, (A.10)

where ωn = (Vn, En) and ∇f(e) is the gradient of f along e. The infimum is uniquely attained
at f∗n given by

f∗n(v) = Pvωn(τ0 <∞), v ∈ Vn, (A.11)
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where Pvωn is the law of the random walk on ωn starting from v, and τ0 is the first hitting time
of 0.

Let ωmn denote the truncation of ωn obtained by cutting away all the vertices at distance
> m from 0. Let Cmn denote the effective conductance of ωmn between 0 and ∂mVn, the set of
leaves of ωmn at distance m from 0. Then, again by the Dirichlet principle,

Cmn = inf
f : Vn→[0,1]

f(0)=1,f(v)=0 ∀v:|v|≥m

∑
e∈En

|∇f(e)|2. (A.12)

Clearly, Cn ≤ Cmn for all m,n. Moreover, Cmn ↓ Cn as m→∞ for every n. To show that the
convergence is uniform in n, we estimate

Cmn ≤
∑

e∈En∩(Vmn ×Vmn )

|∇f∗n(e)|2 +
∑

v∈Vmn ,v′ /∈Vmn
(v,v′)∈En

f∗n(v)2

≤ Cn +
∑

v∈∂mVn

(dv − 1)f∗n(v)2,

(A.13)

where dv is the degree of v. By Condition 1.1, all degrees in ωn are at least 3, and so we have

f∗n(v) ≤ APv,tabooωn (τ0 <∞), (A.14)

where taboo stands for the requirement that the walk moves from v to 0 without returning
to v, and A is the average number of returns to a vertex in a 3-tree. By reversing time, we
see that

dv Pv,tabooωn (τ0 <∞) = d0 P0,taboo
ωn (τv <∞). (A.15)

Hence ∑
v∈∂mVn

(dv − 1)f∗n(v)2 ≤ A2d0
∑

v∈∂mVn

dv − 1

dv
P0,taboo
ωn (τv <∞)Pv,tabooωn (τ0 <∞)

≤ A2d0 P0
ωn(τ∂mVn < τ0).

(A.16)

By Condition 1.1, the latter probability in turn is bounded from above, uniformly in n and
ωn, by the probability pm that simple random walk on the 3-tree moves a distance m away
from its starting vertex and afterwards returns to that vertex. Thus, we obtain the sandwich

Cn ≤ Cmn ≤ Cn +A2d0 pm. (A.17)

Since limm→∞ pm = 0, it follows that

lim
m→∞

sup
n
|Cmn − Cn| = 0. (A.18)

Finally, for every m,
lim
n→∞

Cmn = Cm, (A.19)

where Cm is the effective conductance of the m-truncation of the Galton-Watson tree ω with
law PGW . Moreover, Cm ↓ C as m→∞, with C the effective conductance of ω. Since

an = EGWn
(

Cn
1 + Cn

)
, amn = EGWn

(
Cmn

1 + Cmn

)
, (A.20)

with similar expressions for a and am, and limn→∞ EGWn (d0) = EGW(d0) <∞ by Condition 1.1,
we conclude that

lim
n→∞

an = lim
n→∞

lim
m→∞

amn = lim
m→∞

lim
n→∞

amn = lim
m→∞

am = a. (A.21)

which proves the claim.
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