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ABSTRACT. Motivated by applications, the last few years have witnessed tremendous interest in
understanding the structure as well as the behavior of dynamics for inhomogeneous random
graph models. In this study we analyze the maximal components at criticality of one famous
class of such models, the rank-one inhomogeneous random graph model [37], [13, Section 16.4].
Viewing these components as measured random metric spaces, under finite moment assump-
tions for the weight distribution, we show that the components in the critical scaling window
with distances scaled by n−1/3 converge in the Gromov-Haussdorf-Prokhorov metric to rescaled
versions of the limit objects identified for the Erdős-Rényi random graph components at crit-
icality in [3]. A key step is the construction of connected components of the random graph
through an appropriate tilt of a famous class of random trees called p-trees [8, 19]. This is the
first step in rigorously understanding the scaling limits of objects such as the Minimal spanning
tree and other strong disorder models from statistical physics [15] for such graph models. By
asymptotic equivalence [28], the same results are true for the Chung-Lu model [20–22] and the
Britton-Deijfen-Lof model [17]. A crucial ingredient of the proof of independent interest is tail
bounds for the height of p-trees. The techniques developed in this paper form the main techni-
cal bedrock for proving continuum scaling limits in the critical regime for a wide array of other
random graph models in [9] including the configuration model and inhomogeneous random
graphs with general kernels [13].

1. INTRODUCTION

Motivated by applications and empirical data, the last few years have seen tremendous in-
terest in formulating and studying inhomogeneous random graph models, estimating the pa-
rameters in the model from data, and studying dynamic processes such as epidemics on such
models, see e.g. [6, 13, 22, 23, 36, 44] and the references therein. In such random graph mod-
els different vertices have different propensities for connecting to other vertices. To fix ideas
consider the main model analyzed in this work:

Rank one model: This version of the model was introduced by Norros and Reittu [13, 37]
(with a variant arising in the work of Aldous in the construction of the standard multiplica-
tive coalescent [7]). We construct a random graph on the vertex set [n] = {1,2, . . . ,n} as follows.
Each vertex i ∈ [n] has an associated weight wi Ê 0. Think of this as the propensity of the ver-
tex to form friendships (form edges) in a network. Write w = (wi )i∈[n] for the vector of weights
and let ln = ∑n

i=1 wi be the sum of these weights. The weights actually form a triangular array
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w = w(n) = (w (n)

i : i ∈ [n]), but we will omit n in the notation. Taking the weight sequence w as in-
put, the random graph is constructed as follows. Define probabilities pi j := 1−exp(−wi w j /ln).
Construct the random graph G nr

n (w) by putting an edge
{
i , j

}
between vertices i , j with proba-

bility pi j , independent across edges.
This is an important example of the general class of inhomogeneous random graphs ana-

lyzed by Bollobas, Janson and Riordan [13]. This model is also closely related to two other
famous models of inhomogeneous random graphs (and in fact shown to be asymptotically
equivalent in a number of settings [28])

(a) Chung-Lu model [20–22]: Given the set of weights w as above, here one attaches edges
independently with probability

pi j := max

{
wi w j

ln
,1

}
(b) Britton-Deijfen-Lof model [17]: Here one attaches edges independently with probability

pi j := wi w j

ln +wi w j

These models are inhomogeneous in the sense that different vertices have different pro-
clivity to form edges. Further assume that that the empirical distribution of weights Fn =
n−1 ∑n

i=1δwi satisfies

Fn
w−→ F, as n →∞, (1.1)

for a limiting cumulative distribution function F . Then by [37, Theorem 3.13] as n →∞, the de-
gree distribution converges in the sense that for k Ê 0, writing Nk (n) for the number of vertices
with degree k,

Nk (n)

n
P−→ E

(
e−W W k

k !

)
, k Ê 0,

where W ∼ F . Thus asymptotically one can get any desired tail behavior for the degree distri-
bution by choosing the weight sequence appropriately. Also note that the Erdős-Rényi random
graph G er(n,λ/n) is a special case where all the weights wi ≡λ.

Aside from applications, inhomogeneous random graph models have sparked a lot of inter-
est in the statistical physics community, in particular understanding how the network structure
affects weak and strong disorder models of flow, e.g. first passage percolation, minimal span-
ning tree etc. In the next section we describe what is known about how the network transitions
from the subcritical to the supercritical regime and then describe these conjectures from sta-
tistical physics in more detail.

1.1. Connectivity and phase transition. The main aim of this study is the structural properties
of the maximal components in the critical regime. In order to define the critical regime, we first
recall known connectivity properties of the model. Let W ∼ F where F as before denotes the
limiting weight distribution as in 1.1. Assume 0 < E(W 2) <∞ and assume∑n

i=1 w 2
i∑n

i=1 wi
→ E(W 2)

E(W )
, as n →∞. (1.2)

Define the parameter

ν= E(W 2)

E(W )
. (1.3)
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Write C (i )
n for the i -th largest component of G nr

n (w) (breaking ties arbitrarily) and write |C (i )
n | for

the number of vertices in this component. Then by [13, Theorem 3.1 and Section 16.4] (also
see [17, 21, 37])

(i) Subcritical regime: If ν< 1, then |C (1)
n | = oP (n).

(ii) Supercritical regime: If ν> 1, then

|C (1)
n |

n
P−→ ρ(ν,F ) > 0,

where ρ(ν,F ) is the survival probability of an associated multi-type branching process.
(iii) Critical regime: Thus ν = 1 corresponds to the critical regime. This is the regime of in-

terest for this paper. Similar to the Erdős-Rényi random graph, we will study the entire
critical scaling window, by working with weights (1+λ/n1/3)wi so that the connection
probability is

pi j (λ) := 1−exp

(
−

(
1+ λ

n1/3

)
wi w j

ln

)
(1.4)

We write G nr
n (w,λ) for the corresponding random graph on the vertex set [n]. In this crit-

ical regime (with ν = 1), assuming finite third moments E(W 3) < ∞, it is known [11, 27]
that for any fixed i , the i -th largest component scales like |C (i )

n (λ)| ∼ n2/3. We shall give a
precise description of this result in Section 4.

1.2. Motivation and outline. Let us now informally describe the motivations behind our work.
The main aim of this paper is to study the maximal components C (i )

n (λ) for the rank-one model
above in the critical scaling window and show: these maximal components viewed as metric
spaces with edge lengths rescaled by n−1/3 converge to random fractals related to the continuum
random tree. A natural question is why one should focus on this particular class of random
graph models.

(a) Universality for random graph processes at criticality: The nature of emergence and
scaling limits of component sizes of maximal components in the critical regime of the
Norros-Reittu model (and the closely related multiplicative coalescent) have recently been
observed in a number of other random graph models including the configuration model
[30, 35] as well as a general class of dynamic random graph processes called Bounded size
rules (see e.g. [10, 42]). The first step in understanding the metric structure of the maxi-
mal components for these models in the critical regime is the rank-one model. This pa-
per forms the main technical bedrock for proving continuum scaling limits in the critical
regime for a wide array of other random graph models in [9] including the configuration
model and inhomogeneous random graphs with general kernels [13]. Using the technical
tools developed in this paper, in particular Section 7.1, we paraphrase the main theme of
[9] as follows:

The metric structure of the maximal components in the critical regime for a number
of random graph models, including the configuration model under moment con-
ditions, and inhomogeneous random graph models with finite state space, satisfy
analogous results to Theorem 3.3.

Thus it is not just the main results in this paper that are of interest, rather the proof sec-
tion of this paper sets out the tools required to prove this general program of universality.
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(b) Scaling limits at criticality and the Minimal spanning tree: Our second main motivation
was to rigorously understand predictions from statistical physics (see e.g.[16] and the refer-
ences therein) which predict that most inhomogeneous random graph models in the criti-
cal regime satisfy a remarkably universal behavior in the following sense. Assume that the
limiting degree distribution has finite third moments, then distances in the maximal com-
ponents in the critical regime scale like n1/3. Further consider the minimal spanning tree
on the giant component in the supercritical regime where each edge is assigned a U [0,1]
edge length. It is conjectured that (graph) distances in this object also scale like n1/3. For
the case of the Erdős-Rényi random graph, this entire program has been carried forth in
[4]. Proving this conjecture for general inhomogenous random graphs rigorously turns out
to be technically quite challenging and in particular require a number of non-obvious as-
sumptions, see Assumptions 3.1(d). To strengthen convergence in the stronger l 4 metric
we needed to derive tail bounds for the height of p-trees (Theorem 3.7) which are of inde-
pendent interest.

The rest of the paper is organized as follows. In Section 2, we start with the appropriate
spaces and topology for convergence of a collection of metric spaces and define the Gromov-
Haussdorf-Prokhorov metric. We state our main results in Section 3. We give a precise descrip-
tion of the limit objects in Section 4. We discuss our main results and their relevance as well
as the technical challenges in extending these results in Section 5. Starting from Section 6 we
prove the main results.

2. NOTATION AND PRELIMINARIES

We introduce some basic notation in Section 2.1. In Section 2.2 we define relevant notions
of convergence of measured metric spaces. In Section 2.3 we recall basic graph theoretic defi-
nitions. In Section 2.4, we introduce a family of random trees called p-trees that play a crucial
role in our proofs.

2.1. Notations and conventions. For simplicity, we will often write “nα terms” or “
∑n/2

k=1” when

really it should be “bnαc terms” or “dnαe terms” or “
∑bn/2c

k=1 ” or “
∑dn/2e

k=1 ” as appropriate but this
will not affect the proofs. We use notations such as K3.7 and K7.13 to denote absolute constants.
The subscripts indicate the theorems or lemmas where the constants are first introduced. For
example, K3.7 is the constant in Theorem 3.7 and K7.13 is the constant in Corollary 7.13. Local
constants are denoted by C1,C2, · · · or B1,B2, · · · . We use the standard Landau notation of o(·),
OP(·) and so forth.

2.2. Topology on the space of measured metric spaces. We mainly follow [1, 4, 18]. All metric
spaces under consideration will be measured compact metric spaces. Let us recall the Gromov-
Haussdorf distance dGH between metric spaces. Fix two metric spaces X1 = (X1,d1) and X2 =
(X2,d2). For a subset C ⊆ X1 ×X2, the distortion of C is defined as

dis(C ) := sup
{|d1(x1, y1)−d2(x2, y2)| : (x1, x2), (y1, y2) ∈C

}
. (2.1)

A correspondence C between X1 and X2 is a measurable subset of X1 × X2 such that for every
x1 ∈ X1 there exists at least one x2 ∈ X2 such that (x1, x2) ∈ C and vice-versa. The Gromov-
Haussdorf distance between the two metric spaces (X1,d1) and (X2,d2) is defined as

dGH(X1, X2) = 1

2
inf

{
dis(C ) : C is a correspondence between X1 and X2

}
. (2.2)
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We will need a metric that also keeps track of associated measures on the corresponding
spaces. A compact measured metric space (X ,d ,µ) is a compact metric space (X ,d) with an
associated finite measure µ on the Borel sigma algebra B(X ). Given two compact measured
metric spaces (X1,d1,µ1) and (X2,d2,µ2) and a measure π on the product space X1 × X2, the
discrepancy of π with respect to µ1 and µ2 is defined as

D(π;µ1,µ2) := ||µ1 −π1||+ ||µ2 −π2|| (2.3)

where π1,π2 are the marginals of π and || · || denotes the total variation of signed measures.
Then the Gromov-Haussdorf-Prokhorov distance between X1 and X2 is defined

dGHP(X1, X2) := inf

{
max

(
1

2
dis(C ), D(π;µ1,µ2), π(C c )

)}
, (2.4)

where the infimum is taken over all correspondences C and measures π on X1 ×X2.
Denote by S the collection of all measured metric spaces (X ,d ,µ). The function dGHP is a

pseudometric on S , and defines an equivalence relation X ∼ Y ⇔ dGHP(X ,Y ) = 0 on S . Let
S̄ := S / ∼ be the space of isometry equivalent classes of measured compact metric spaces
and d̄GHP be the induced metric. Then by [1], (S̄ , d̄GHP) is a complete separable metric space.
To ease notation, we will continue to use (S ,dGHP) instead of (S̄ , d̄GHP) and X = (X ,d ,µ) to
denote both the metric space and the corresponding equivalence class.

Since we will be interested in not just one metric space but an infinite sequence of metric
spaces, the relevant space of interest is a subset of S N. For a fixed measured compact met-
ric space (X ,d ,µ), define the diameter as diam(X ) := supx,y∈X d(x, y) and the total mass as
mass(X ) :=µ(X ) . Then the relevant space for our study will be

M :=
{

(X1, X2, . . .) : Xi = (Xi ,di ,µi ) ∈S ,
∞∑

i=1
(diam(Xi )4 +mass(Xi )4) <∞

}
. (2.5)

The two relevant topologies on this space are

(i) Product topology: We shall denote the product topology inherited by dGHP on a single
co-ordinate by T1.

(ii) l 4 metric [3]: We shall let T2 denote the topology on M induced by the distance

dist((X1, X2, . . .), (X ′
1, X ′

2, . . .)) :=
( ∞∑

i=1
dGHP(Xi , X ′

i )4

)1/4

. (2.6)

The aim of this paper is to study the limits of connected components of random graphs
viewed as measured metric spaces. In order to state our results, both the metric and the corre-
sponding measure need to be re-scaled appropriately. To make this precise, we introduce the
scaling operator scl(α,β), for α,β ∈ (0,∞), as follows:

scl(α,β) : S →S , scl(α,β)[(X ,d ,µ)] := (X ,d ′,µ′),

where d ′(x, y) :=αd(x, y) for all x, y ∈ X , and µ′(A) :=βµ(A) for A ⊂ X . For simplicity, we write
the output of the above scaling operator as scl(α,β)X . Using the definition of dGHP, it is easy to
check that for X ∈S and for fixed α,β> 0,

dGHP(scl(α,β)X , X ) É |α−1| ·diam(X )+|β−1| ·mass(X ).

Note that diam(·) and mass(·) are both continuous functions on (S ,dGHP). Using this fact and
the above bound we have the following easy proposition.
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Proposition 2.1. Let {αn : n Ê 1} and
{
βn : n Ê 1

}
be two sequences of positive numbers. Further

assume limn→∞αn =α> 0 and limn→∞βn =β> 0. Let {Xn : n Ê 1} ⊂S be a sequence of metric
spaces such that Xn → X ∈S in the metric dGHP as n →∞. Then we have

scl(αn ,βn)Xn → scl(α,β)X , in dGHP as n →∞.

As in the above proposition and the rest of this paper, we will always equip S with the topol-
ogy generated by dGHP.

2.3. Graphs, trees and ordered trees. All graphs in this study will be simple undirected graphs
G . We will typically write V (G ) for the vertex set of G and E(G ) for the corresponding edge
set. We will write an edge as e = (u, v) ∈ E(G ) with the understanding that (u, v) represents an
undirected edge and is equivalent to (v,u). As before we write [n] = {1,2, . . . ,n}. We will typically
denote a connected component of G by C ⊆G . A connected component C , can be viewed as
a metric space by imposing the usual graph distance dG namely

dG(v,u) = number of edges on the shortest path between v and u, u, v ∈C .

Recall that to construct the random graph, we started with a collection of vertex weights
{wi : i ∈ [n]}. Thus there are two natural measures for a connected graph G with associated
vertex weights w := {wv : v ∈G }:

(i) Counting measure: µct(A) := |A|, for A ⊂V (G ).
(ii) Weighted measure: µw(A) := ∑

v∈A wv , for A ⊂ V (G ). If no weights are specified then the
default convention is to take wv ≡ 1 for all v thus resulting in µw =µct.

For a fixed finite connected graph G equipped with vertex weights {wv : v ∈G } (by convention
wv = 1 if not pre-specified), one obtains a measured metric space (V (G ),dG,µ), where µ is
either µct or µw. For G finite and connected, the corresponding metric space is compact with
finite measure. We use G for both the graph and the corresponding measured metric space.

A tree t is a connected graph with no cycle. A rooted tree is a pair (t,r ) where t is a tree and
r ∈ V (t) is a distinguished vertex referred to as the root. All trees in the sequel will be rooted
trees. Thinking of r as the original progenitor of a genealogy, for vertices in the tree the notions
parent, children, ancestors, siblings, generations and heights have their usual interpretation. An
ordered tree is a rooted tree in which an order is specified amongst the children of each vertex
so that one can talk about the first child, the second child etc. Such trees will be represented as
(t,π), where t is a rooted tree and π is the corresponding order. Such trees are also referred to
as planar trees as they can be embedded on the plane, arranging children of each vertex from
left to right in increasing value of the order.

For n ∈ N, write Gn , Gcon
n , Tn and Tord

n for the collection of all graphs, connected graphs,
rooted trees and ordered trees, respectively, with vertex set [n]. For ease of notation, we sup-
press π in the pair (t,π) for ordered trees and just write t ∈ Tord

n . Planar trees can be treated
as connected graphs by forgetting about the root and order. Therefore all notations for graphs
apply to rooted ordered trees as well. In particular, any tree t can be viewed as a measured
metric space in S .

2.4. p-Trees. In this section, we define a family of random tree models called p-trees, which
play a key role in the proof. See [38] for a comprehensive survey including their role in linking
combinatorial objects such as the Abel-Cayley-Hurwitz multinomial expansions with proba-
bility. Fix m Ê 1, and a probability mass function p = (p1, p2, . . . , pm) with pi > 0 for all i ∈ [m].
A p-tree is a random tree in Tm , with law as follows. For any fixed t ∈Tm and v ∈ t, write dv (t),
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for the number of children of v in the tree t. Then the law of p-tree, denoted by Ptree, is defined
as:

Ptree(t) =Ptree(t;p) = ∏
v∈[m]

pdv (t)
v , t ∈Tm . (2.7)

Generating a random p-tree T and then assigning a uniform random order on the children of
every vertex v ∈T gives a random element with law Pord(·;p) given by

Pord(t) =Pord(t;p) = ∏
v∈[m]

pdv (t)
v

(dv (t))!
, t ∈Tord

m . (2.8)

Obviously a p-tree can be constructed by first generating an ordered p-tree with the above
distribution and then forgetting about the order.

3. RESULTS

We are now in a position to describe our main results. Section 3.1 describes our main re-
sults for the Norros-Reittu model(and the associated Chung-Lu model and Britton-Deijfen-Lof
model) in the critical regime. In Section 3.2 we describe tail bounds on the diameter of p-trees
which play a crucial role in the proof of convergence in the l 4 metric.

3.1. Scaling limits for the Norros-Reittu random graph at criticality. We start by stating the
assumptions on the weight sequence w used to construct the random graph G nr

n (w,λ). Note
that through out wi = wi (n) might depend on n but we suppress this dependence. Define

σk (n) := n−1
n∑

i=1
w k

i for k = 1,2,3

wmax = max
i∈[n]

wi and wmin = min
i∈[n]

wi .

We make the following assumptions on the asymptotic behavior of the weight sequence.

Assumption 3.1.

(a) Convergence of three moments: There exist constants σk > 0 for k = 1,2,3 such that

max
{
n1/3|σ1(n)−σ1|, n1/3|σ2(n)−σ2| , |σ3(n)−σ3|

}→ 0 as n →∞.

(b) Critical regime: σ1 =σ2.
(c) Bound on the maximum: There exists η0 ∈ (0,1/6) such that wmax = o(n1/6−η0 ).
(d) Bound on the minimum: There exists γ0 > 0 such that 1/wmin = o(nγ0 ). Thus minimal

weights decrease at most polynomially quickly to zero.

For convergence in T2 topology, we will need the following stronger assumption on wmax.

Assumption 3.2. There exists η0 ∈ (0,1/48) such that wmax = o(n1/48−η0 ).

For fixed λ ∈ R, recall the Norros-Reittu random graph G nr
n (w,λ) defined below (1.4). For

i Ê 1, let C (i )
n (λ), denote the i -th largest component of G nr

n (w,λ). As described in Section 1.1,
the number of vertices in C (i )

n is of order n2/3 (we describe the precise limit result in Section
4). Equipping C (i )

n (λ) with the graph distance metric and assigning weight wv for each vertex
v , we view each of these components as measured metric spaces (see Section 2.3). Our main
result is about the limit of the scaled metric spaces defined as

Mn(λ) := (scl(n−1/3,n−2/3) ·C (i )
n (λ) : i Ê 1),

namely, rescaling graph distance by n−1/3 and each of the weights by n−2/3.
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Theorem 3.3. Fix λ ∈R. Consider the Norros-Reittu model G nr
n (w,λ) with weight sequence w.

(i) Under Assumption 3.1, then as n →∞,

Mn(λ)
w−→ M(λ) (3.1)

where M(λ) = (Mi (λ) : i Ê 1) is an M -valued random variable and the convergence takes
place with respect to T1 topology. The construction of M(λ) is given in Section 4.

(ii) Under the additional Assumption 3.2, the above convergence takes place with respect to T2

topology as in (2.6).

Remark 1. Write G er(n, p) for the Erdős-Rényi random graph with vertex set [n] and connec-
tion probability p. The critical scaling window corresponds to p = 1/n +λ/n4/3 with λ ∈ R
([12, 24, 29, 32, 33]). Write C (i ),er

n (λ) for the i -th largest component of G er(n,1/n +λ/n4/3), and
treat them as measured metric spaces. Define Mn,er(λ) as

Mn,er(λ) := (
scl(n−1/3,n−2/3) ·C (i ),er

n (λ) : i Ê 1
)

.

Building on the analysis by Aldous [7] on the size and surplus of components at criticality,
[3, Theorem 2] and [4, Section 4] showed that, as n →∞,

Mn,er(λ)
w−→ Mer(λ) = (M er

i (λ) : i Ê 1) ∈M , (3.2)

where Mer(λ) is described in detail in Section 4, with convergence is with respect to the T2

topology. It will be shown in Lemma 4.2 that the limiting metric spaces in Theorem 3.3 satisfy

M(λ)
d= scl

(
µ

σ2/3
3

,
µ

σ1/3
3

)
·Mer(λµ/σ2/3

3 ).

This actually shows that under the assumptions of Theorem 3.3, critical rank-one inhomoge-
neous random graphs viewed as metric spaces belong to the Erdős-Rényi universality class.

The following Corollary gives a simple choice of weights which satisfy the relevant assump-
tions.

Corollary 3.4. Let {wi : i ∈ [n]} be iid copies of a strictly positive random variable W that satisfies

E(W ) = E(W 2), lim
x↓0

x−εP(W ≤ x) = 0 for some ε> 0.

Conditional on the weights w = {wi : i ∈ [n]} construct G nr
n (w,λ) as above.

(i) Assume EW 6+ε <∞, then the convergence in (3.1) holds in T1 topology.
(ii) Assume EW 48+ε <∞, then the convergence in (3.1) holds in T2 topology.

Now write Dn for the diameter of the graph G nr
n (w,λ), namely the largest graph distance be-

tween two vertices in the same component in G nr
n (w,λ). Once one is able to prove convergence

in the l 4 metric, as in [3], one gets asymptotics for the diameter as well.

Theorem 3.5. Assume that the weight sequence satisfies Assumptions 3.1 and 3.2. Then

Dn

n1/3
w−→Ξ∞

where Ξ∞ is a positive random variable that has an absolutely continuous distribution.

By [28, Corollary 2.12], the Norros-Reittu random graph model is asymptotically equivalent
(in the sense of [28]) to the Chung-Lu model and the Britton-Deijfen-Lof model under Assump-
tions 3.1. Hence, an immediate consequence of Theorem 3.3 and Theorem 3.5 is the following
corollary.



CONTINUUM LIMIT OF INHOMOGENEOUS RANDOM GRAPHS 9

Theorem 3.6. In the setup of Theorems 3.3 and 3.5, the conclusions hold for the Chung-Lu model
and Britton-Deijfen-Lof model.

3.2. Height of p-trees. Fix m Ê 1 and assume that we are given a positive probability vector
p = p(m) = (p (m)

i : i ∈ [m]). We omit m in the notation. Define

σ(p) =
√

m∑
i=1

p2
i , pmax = max

1ÉiÉm
pi , pmin = min

1ÉiÉm
pi .

We will prove the following tail bound for the height of p-trees. Let T ∈ Tm be a random
p-tree with distribution as in (2.7). Let ht(T ) be the height of the tree T .

Theorem 3.7 (Tail bounds). Assume that there exist ε0 ∈ (0,1/2) and r0 ∈ (2,∞) such that

σ(p) É 1

210
,

pmax

[σ(p)]3/2+ε0
É 1,

[σ(p)]r0

pmin
É 1. (3.3)

Then for any r > 0, there exists some constant K3.7 = K3.7(r ) > 0, such that

P

(
ht(T ) Ê x

σ(p)

)
É K3.7

xr
, for x Ê 1. (3.4)

Remark 2. The assumptions in (3.3) are satisfied since the three quantities in (3.3), under the
assumptions in this paper, converge to zero as m → ∞. The above theorem gives a uniform
tail bound for all p satisfying (3.3). This makes it possible to control the diameter for many
components in G nr

n (w,λ) uniformly and prove convergence in T2 topology in Theorem 3.3.

4. DESCRIPTION OF LIMIT OBJECTS

In this section we describe the limit objects M(λ) arising in Theorem 3.3, first constructed
for the Erdős-Rényi random graph in [3]. We need the following three ingredients:

(i) Real trees: An abstract notion of “tree-like” metric spaces.
(ii) Shortcuts: A notion of when and where to identify points in the real tree to take into

account the fact that maximal components in the critical regime may not be trees and
could have non-zero surplus or complexity.

(iii) Tilted Brownian excursions: We will need Brownian excursions whose length are de-
scribed by the limit of component sizes (appropriately rescaled) of the rank-one model
as proved in [11] tilted in favor of excursions with “large area”.

4.1. Real trees and shortcuts. A compact metric space (X ,d) is called a real tree [25, 31] if
between every two points there is a unique geodesic such that this path is also the only non
self-intersecting path between the two points. Functions encoding excursions can be used to
construct such metric spaces which we now describe.

For 0 < a < b <∞, an excursion on [a,b] is a continuous function h ∈ C ([a,b]) with h(a) =
0 = h(b) and h(t ) > 0 for t ∈ (a,b). The length of such an excursion is b −a. For l ∈ (0,∞), let El

be the space of all excursions on the interval [0, l ]. Given an excursion h ∈ El , one can construct
a real tree as follows. Define the pseudo-metric dh on [0, l ] as follows:

dh(s, t ) := h(s)+h(t )−2 inf
u∈[s,t ]

h(u), for s, t ∈ [0, l ]. (4.1)

Define the equivalence relation s ∼ t ⇔ dh(s, t ) = 0. Let the [0, l ]/ ∼ denote the correspond-
ing quotient space and consider the metric space T (h) := ([0, l ]/ ∼, d̄h), where d̄h is the metric
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induced by dh . Then T (h) is a real tree ([25, 31]). Let qh : [0, l ] → T (h) be the canonical pro-
jection and write µh for the push-forward of the Lebesgue measure on [0, l ] onto T (h) via qh .
Equipped with µh , T (h) is now a measured metric space.

Since our limit objects will not necessarily be trees, we define a procedure that incorporates
“short cuts” (more precisely identification of points) on a real tree. Let h, g ∈ El be two excur-
sions, and P ⊆R+×R+ be a countable set with

g ∩P := {
(x, y) ∈P : 0 É x É l , 0 É y < g (x)

}<∞.

Using these three ingredients, we construct a metric space G (h, g ,P ) as follows. Let T (h) be
the real tree associated with h and qh : [0, l ] → T (h) be the canonical projection. Suppose
g ∩P = {

(xi , yi ) : 1 É i É k
}

for some k <∞. For each i É k, define

r (xi , yi ) := inf
{

x : x Ê xi , g (x) É yi
}

. (4.2)

For the i É k points, identify the points qh(xi ) and qh(r (xi , yi )) in T (h). Call the resulting
metric space G (h, g ,P ). Equipping this metric space with the push forward of the measure µh

on T (h) makes G (h, g ,P ) a measured metric space. G (h, g ,P ) can be viewed as the metric
space obtained by adding k shortcuts in T (h), with the location of the shortcuts determined
by the excursion g and the collection of points P . A shortcut between two points u, v ∈ T (h)
identifies these two points as a single point.

4.2. Scaling limits for component sizes of the Norros-Reittu model. Let {B(s) : s Ê 0} be a
standard Brownian motion. For κ,σ ∈ (0,∞) and λ ∈R, define

W λ
κ,σ(s) := κB(s)+λs −σ s2

2
, s Ê 0. (4.3)

Define the reflected process

W̄ λ
κ,σ(s) :=W λ

κ,σ(s)− min
0ÉuÉs

W λ
κ,σ(u), s Ê 0. (4.4)

Define the metric space

l 2
↓ :=

{
x = (xi : i Ê 1) : x1 Ê x2 Ê . . . Ê 0,

∞∑
i=1

x2
i <∞

}
,

equipped with the natural metric inherited from l 2. It was shown by Aldous in [7] that the
excursions of W̄ λ

κ,σ from zero can be arranged in decreasing order of their lengths as

ξλκ,σ = (ξλκ,σ(i ) : i Ê 1), (4.5)

where ξλκ,σ(i ) denotes the length of the i -th largest excursion, and further ξλκ,σ ∈ l 2
↓ .

Consider the critical Norros-Reittu model G nr
n (w,λ) with connection probabilities as in (1.4).

Let |C (i )
n (λ)| be the size of the i -th largest component, for i Ê 1. In [11] the following was shown

about the normalized component sizes under finite third moment assumptions on the weight
sequence.

Theorem 4.1 ([11]). Fix λ ∈R. Under Assumption 3.1 (a), (b) and (c), as n →∞, we have( |C (i )
n (λ)|

n2/3
: i Ê 1

)
w−→ ξλp

σ3/σ1,σ3/σ2
1
,

where the weak convergence is with respect to the topology generated by the l 2 norm.
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Remark 3. It was assumed in [11] that wmax = o(n1/3) and that the empirical distribution
1
n

∑n
i=1δwi converges in distribution to some limiting distribution F . This second assumption

was not used in the proof of Theorem 4.1 other than to assert that express the limit constants
σi in terms of moments of W ∼ F and thus can be removed as long as one has Assumptions 3.1
(a) and (b). We place stronger assumptions on wmax as in Assumption 3.1 (c).

To ease notation, for the rest of this section we shall suppress dependence on σ1,σ3 and λ

and write the limiting component sizes as

ξλp
σ3/σ1,σ3/σ2

1
:= Z = (Zi : i Ê 1). (4.6)

Using Brownian scaling
{

a−1/2B(as) : s Ê 0
} d= {B(s) : s Ê 0} with a = (κ/σ)2/3 implies that, for

s Ê 0,

W λ
κ,σ(as) = κ4/3

σ1/3

[
a−1/2B(as)+ λ

κ2/3σ1/3
s − s2

2

]
d= κ4/3

σ1/3
W λ/κ2/3σ1/3

1,1 (s).

Thus we have ξλκ,σ
d= (κ/σ)2/3ξλ/κ2/3σ1/3

1,1 . Therefore the limit object in Theorem 4.1 satisfies

Z
d= σ1

σ1/3
3

ξ
λσ1/σ2/3

3
1,1 . (4.7)

This relation will be useful in proving Lemma 4.2.

4.3. Tilted Brownian excursions. For fixed l > 0, recall that El denotes the space of excur-
sions of length l . We can treat El as a subset of C ([0,∞), [0,∞)) by identifying h ∈ El with
g ∈ C ([0,∞), [0,∞)) where g (s) = h(s) for s ∈ [0, l ] and g (s) = 0 for s > l . Write E := ∪l>0El

for the space of all finite length excursions from zero and equip E with the L∞ norm, namely,
‖h‖∞ = sups∈[0,∞) |h(s)|.

Let {el (s) : s ∈ [0, l ]} be a standard Brownian excursion of length l . For l > 0 and θ > 0, define
the tilted Brownian excursion ẽθl as an E -valued random variable such that for all bounded
continuous function f : E →R,

E[ f (ẽθl )] =
E
[

f (el )exp
(
θ

∫ l
0 el (s)d s

)]
E
[

exp
(
θ

∫ l
0 el (s)d s

)] . (4.8)

Note that el and ẽθl are both supported on El . Writing νl and ν̃θl respectively for the law of el

and ẽθl on El the Radon-Nikodym derivative is given by

d ν̃θl
dνl

(h) =
exp

(
θ

∫ l
0 h(s)d s

)
∫
El

exp
(
θ

∫ l
0 h(s)d s

)
dνl (dh)

, h ∈ El .

When l = 1, we use e(·) for the standard Brownian excursion. For fixed l > 0 and θ = 1 we write
ẽl (·) for the corresponding tilted excursion.

By Brownian scaling,
{p

ael (s/a) : s ∈ [0, al ]
} d= {eal (s) : s ∈ [0, al ]} for a > 0, thus∫ al

0 eal (s)d s
d= a3/2

∫ l
0 el (s)d s. Taking a = θ2/3 and applying this to (4.8) gives

E[ f (ẽθl )] =
E
[

f ( 1p
a

eal (a·))exp
(∫ al

0 eal (s)d s
)]

E
[

exp
(∫ al

0 eal (s)d s
)] = E

[
f

(
1p
a

ẽal (a·)
)]

.
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Thus the tilted excursions have the following scaling:{
ẽθl (s) : s ∈ [0, l ]

}
d=

{
1

θ1/3
ẽθ2/3l (θ2/3s) : s ∈ [0, l ]

}
. (4.9)

Note that the scaling relation below the equation (20) of [3] is not correct, which says ‖ẽl‖∞ d=p
l‖ẽ‖∞ under our notation. Based on (4.9), the correct version should be ‖ẽl‖∞ d=p

l‖ẽl 3/2‖∞.
In general, for any l ,γ,θ > 0, we have{

ẽθγl (s) : s ∈ [0, l ]
}

d=
{

1

θ1/3
ẽγ
θ2/3l

(θ2/3s) : s ∈ [0, l ]

}
. (4.10)

4.4. Construction of the scaling limit. We are now in a position to describe the scaling limits
M(λ) = (Mi (λ) : i Ê 1) in Theorem 3.3. Let Z be a l 2

↓ -valued random variable as defined in (4.6)
representing limits of normalized component sizes. Conditional on Z, generate a sequence
h := (hi : i Ê 1) of independent random excursions in E via the prescription

hi
d= ẽ

σ1/2
3 /σ3/2

1
Zi

, i Ê 1.

Let P = (P i : i ∈N) be a sequence of iid rate one Poisson point processes on R+×R+, indepen-
dent of (Z,h). Define the metric spaces Mi (λ) ∈S , i Ê 1 as

Mi (λ) :=G

(
2σ1/2

1

σ1/2
3

hi ,
σ1/2

3

σ3/2
1

hi ,P i

)
=G

(
2σ1/2

1

σ1/2
3

ẽ
σ1/2

3 /σ3/2
1

Zi
,
σ1/2

3

σ3/2
1

ẽ
σ1/2

3 /σ3/2
1

Zi
,P i

)
, (4.11)

where recall the construction of the metric spaces G (h, g ,P ) using the real trees encoded by
excursions h and shortcuts generated by the excursion g and collection of points P as intro-
duced in Section 4.1. Write M(λ) = (Mi (λ) : i Ê 1) for the sequence of random metric spaces
so constructed. Then this is the asserted continuum limit of the critical components in the
Norros-Reittu model in Theorem 3.3.

Now we compare this limit to the limit metric spaces for Erdős-Rényi random graphs as
proved in [3].

Lemma 4.2. The limit objects for the rank-one model satisfy the distributional equivalence

M(λ)
d= scl

(
σ1

σ2/3
3

,
σ1

σ1/3
3

)
·Mer

(
λσ1

σ2/3
3

)
,

where for any λ′ ∈ R, Mer(λ′) denote the limit objects for the Erdős-Rényi random graph
G er

n (n,1/n +λ′/n4/3) as constructed in [3].

Proof: Write

ξλ1,1 :=γ(λ) = (γi (λ) : i ∈N). (4.12)

In [3] it is shown that the scaling limits for the Erdős-Rényi model G er(n,1/n +λ/n4/3) is

Mer(λ) = (M er
i (λ) : i Ê 1), where M er

i (λ) :=G (2ẽγi (λ), ẽγi (λ),P i ).

In order to compare M(λ) and Mer(λ), we again use Brownian scaling. By (4.7), we have

Zi = σ1

σ1/3
3

γi (λσ1/σ2/3
3 ). (4.13)
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By the definition of G (h, g ,P ) in Section 4.1 and scl(α,β) in Section 2.2, we have for α,β> 0,

scl(α,β) ·G (h, g ,P ) =G (αh(·/β),
1

β
g (·/β),P β), (4.14)

where P β := {
(βx, y/β) : (x, y) ∈P

}
. With the these ingredients, letting θ̄ :=σ1/2

3 /σ3/2
1 , we have

Mi (λ) =G

(
2σ1/2

1

σ1/2
3

ẽθ̄Zi
,
σ1/2

3

σ3/2
1

ẽθ̄Zi
,P i

)
d=G

(
2σ1/2

1

σ1/2
3 θ̄1/3

ẽθ̄2/3 Zi
(θ̄2/3·),

σ1/2
3

σ3/2
1 θ̄1/3

ẽθ̄2/3 Zi
(θ̄2/3·),P i

)

=G

(
2σ1/2

1

σ1/2
3 θ̄1/3

ẽγi (λσ1/σ2/3
3 )(θ̄

2/3·),
σ1/2

3

σ3/2
1 θ̄1/3

ẽγi (λσ1/σ2/3
3 )(θ̄

2/3·),P i

)
,

where the first line is by definition, the second line is because of (4.9), and the third line follows
from (4.13). To ease notation write γi = γi (λσ1/σ2/3

3 ). Then taking ᾱ=σ2/3
3 /σ1, we have

scl(ᾱ, θ̄2/3) ·Mi (λ) =G

(
2ᾱσ1/2

1

σ1/2
3 θ̄1/3

ẽγi (·),
σ1/2

3

σ3/2
1 θ̄

ẽγi (·),P θ̄2/3

i

)
=G

(
2ẽγi (·), ẽγi (·),P θ̄2/3

i

)
d=G

(
2ẽγi (·), ẽγi (·),P i

)
,

where the first line uses (4.14), the second line follows form the definition of ᾱ and θ̄, and the

third line follows from the fact about Poisson point processes P
β

i
d= P i for all β > 0, and the

independence between P i and hi in the construction. The proof of Lemma 4.2 is completed.
■

5. DISCUSSION

Before proceeding to the proofs, let us briefly describe the relevance of these results and
their connection to the existing literature on random graphs.

(a) Connection to existing results: As remarked in Section 1.2, the main aim of the paper was
to rigorously understand conjectures in statistical physics on scaling limits of distances in
the critical regime for inhomogeneous random graph models, which then predict distances
for the minimal spanning tree (on the giant component) in the supercritical regime where
each edge has U [0,1] edge weights. See [15] and the references therein. This entire program
has been rigorously carried out for the complete graph see [2, 3, 5] for a sequence of results
including distance scaling for the maximal components in the critical regime for the Erdős-
Rényi random graph, finally culminating in the scaling limit of the minimal spanning tree
of the complete graph equipped with uniform edge weights. Most influential to this study is
[3] which constructed the scaling limit of these components in the critical regime. Extend-
ing these results to the context of general inhomogeneous random graph models turned
out to be challenging since the homogeneous nature of the Erdős-Rényi played an impor-
tant role in various parts of the proof in [3].

While there have been few rigorous results on the actual structure of components in the
critical regime for general random graph models, if one were interested in only sizes of
the maximal components, then this has witnessed significant progress over the last few
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years, see [26, 30, 35, 39] for results on the configuration model, [10] for results on a class
of dynamic random graph processes called the bounded-size-rules and most relevant for
this work [11, 43] for results for the rank-one inhomogeneous random graph. See [14] for a
recent survey.

(b) Importance of the assumptions: Consider the critical rank-one model studied in this pa-
per. To prove our main results, we needed moment Assumptions 3.1. If one were inter-
ested in just proving results on the sizes of components (Theorem 4.1), finite third moment
assumptions, namely Assumptions 3.1(a),(b) and (c) replaced by wmax = o(n1/3) suffice.
However to understand the actual metric structure of the component, one is lead to these
stronger assumptions owing to technical conditions in [8], required to show that in our set-
ting the associated (untilted) p-trees (properly rescaled by n1/3) have scaling limits related
to the continuum random tree. The results in [8] in fact assume exponential moments,
however as in the Remark under [8, Theorem 3], these can be extended without much work
following the same proof technique as in [8] to the setting of finite moment conditions, we
state this extension in Theorem 7.6. We believe that in fact these results can be extended all
the way to finite third moments and are in the process of understanding how to refine these
results. Given the technical nature of the proof even with sufficient moment assumptions,
we defer this to future work.

6. PROOF PRELIMINARIES AND OUTLINE

We now start on the proofs of the main results. In this section we start with an outline of the
proof and describe some preliminary properties of the rank-one model.

6.1. Outline of proof. Let us describe the main steps in the proof. We start in Section 6.2 where
we describe how the the connected components of the rank-one model can be constructed
in two steps. In particular this will imply that there are two major foci in understanding the
maximal connected components:

(a) Constructing a rank-one model conditional on being connected. In Section 7.1, we explore
such a graph in a randomized depth-first manner and show that the law of this depth-first
tree is that of an ordered tilted p-tree (Proposition 7.4). This will imply an alternate way of
constructing a rank-one graph conditioned on being connected: first generate an ordered
tilted p-tree and then add the surplus edges independently (Proposition 7.4) with appro-
priate probability. Strengthening the results of [8], it follows that an ordinary p-tree con-
verges in Gromov-Hausdorff topology (after the tree distance has been properly rescaled)
to a continuum random tree under some regularity conditions on the driving probability
mass function p. Provided we can show the corresponding tilt is “nice”, this would imply
that rank-one random graphs conditioned on being connected converge to a tilted contin-
uum tree where certain pairs of points have been identified. We achieve this with the help
of Lemma 7.10 (which shows that the tilt converges pointwise) and Lemma 7.11 (which
yields uniform integrability of the tilt).

(b) Regularity of vertex weights in the maximal components. To study this, we start in Section 8
by describing the exploration of the graph G nr

n (w,λ) in a size-biased random order first used
in [7] and later used in [11] to prove Theorem 4.1 on the scaling of the maximal components
in the critical regime. We use this exploration to establish strong regularity properties of the
weights of vertices in these maximal components (Proposition 8.1).
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Now conditional on these regularity properties being satisfied within each maximal com-
ponent, the internal structure of each maximal component is simply that of a rank-one in-
homogeneous graph conditioned on being connected. We then combine these two aspects to
prove convergence of the scaled components Section 9 where we first prove convergence in the
product topology T1. To extend the convergence of the components in T2 topology (l 4 met-
ric) amounts to proving a tail bound on the diameter of the components. Since the depth-first
tree of each component spans the component and is distributed as a tilted p-tree, it is enough
to get a tail bound on heights of p-trees. We achieve this in Section 10 by using techniques
from [8, 19]. Finally in Section 11, we complete the proof of some lemmas which are essential
ingredients in the proof of convergence in T2 topology.

6.2. Connected components of the model. Recall that (C (i )
n : i ∈ N) are the components of

G nr
n (w,λ). Fix V ⊂ [n] and writeGcon

V
the space of all simple connected graphs with vertex set V .

For fixed a > 0, and probability mass function p = (pv : v ∈ V ), define probability distributions
Pcon(·;p, a,V ) on Gcon

V
as follows: Define for i , j ∈ V ,

qi j := 1−exp(−api p j ). (6.1)

Then

Pcon(G ;p, a,V ) := 1

Z (p, a)

∏
(i , j )∈E(G)

qi j
∏

(i , j )∉E(G)
(1−qi j ), for G ∈Gcon

V , (6.2)

where Z (p, a) is the normalizing constant

Z (p, a) := ∑
G∈Gcon

V

∏
(i , j )∈E(G)

qi j
∏

(i , j )∉E(G)
(1−qi j ).

Now define V (i ) := {
v ∈ [n] : v ∈C (i )

n
}

for i ∈ N and note that
{
V (i ) : i Ê 1

}
denotes a random (fi-

nite) partition of the complete vertex set [n]. The next proposition characterizes the distribu-
tion of the random graphs (C (i )

n : i ∈N) conditioned on the partition
{
V (i ) : i ∈N}

.

Proposition 6.1. For i Ê 1 define

p(i ) :=
(

wv∑
v∈V (i ) wv

: v ∈ V (i )

)
, a(i ) :=

(
1+ λ

n1/3

)
(
∑

v∈V (i ) wv )2

ln
.

Then for any k ∈N and Gi ∈Gcon
V (i ) , we have

P
(
C (i )

n =Gi , ∀i Ê 1 | {V (i ) : i Ê 1
})= ∏

iÊ1
Pcon(Gi ;p(i ), a(i ),V (i )).

The above proposition says the random graph G nr
n (w,λ) can be generated in two stages.

(i) In the first stage generate the partition of the vertices into different components, i.e.{
V (i ) : i ∈N}

.
(ii) In the second stage, given the partition, we generate the internal structure of each compo-

nent following the law of Pcon(·;p(i ), a(i ),V (i )), independently across different components.

The proof of Proposition 6.1 immediately follows from the expression of connection probability
and independence structure of the Norros-Reittu model, which is omitted.

The plan of the next section is to study the technically more challenging question of the
rank-one random graph conditioned on being connected.
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7. SCALING LIMIT OF RANK-ONE GRAPHS CONDITIONED ON BEING CONNECTED

In this section we study the continuum limit of general rank-one random graphs condi-
tioned on being connected. For m Ê 1 and let p(m) = (p (m)

i : i ∈ [m]) be a probability mass func-
tion. We will suppress m in the notation and just write p = (pi : i ∈ [m]). Recall the definitions

σ(p) :=
√ ∑

i∈[m]
p2

i , pmax := max
i∈[m]

pi , pmin := min
i∈[m]

pi .

We will make the following assumptions on p as m →∞.

Assumption 7.1. There exists ε> 0 and r > 0 such that, as m →∞, we have

σ(p) → 0,
pmax

[σ(p)]3/2+ε → 0,
[σ(p)]r

pmin
→ 0.

Recall that Gcon
m was defined as the collection of all connected graphs with vertex set [m]. Let

{a(m) : m Ê 1} be a sequence of positive real numbers. We will use a = a(m) and p to construct
a probability measure Pcon on Gcon

m as follows:

Pcon(G) :=Pcon(G ;p, a, [m]), G ∈Gcon
m , (7.1)

where the latter is defined in (6.2). Let Gm be a Tord
m -valued random variable with distribution

Pcon. Thus Gm has the same distribution as a rank-one random graph with vertex set [m] and
connection probabilities qi j = 1−exp(−api p j ), conditioned on being connected. We will think
of Gm ∈ Gcon

m as a measured metric space as described in Section 2.3 using the graph distance,
and further assigning mass pi to vertex i ∈ [m]. The main result of this section shows that
under some conditions, as m →∞, the metric space Gm with graph distance rescaled by σ(p)
converges to a measured (random) metric space with distribution as described in Section 4.1.
In addition to Assumption 7.1, we need the following assumption on a(m).

Assumption 7.2. For some constant γ̄ ∈ (0,∞),

lim
m→∞aσ(p) = γ̄. (7.2)

The main aim of this section is to prove the following result.

Theorem 7.3. Let Gm be a Gcon
m -valued random variable with law Pcon. Under Assumptions 7.1

and 7.2, as m →∞,
scl

(
σ(p),1

) ·Gm
w−→G (2ẽγ̄, γ̄ẽγ̄,P ),

where ẽγ̄ is the tilted Brownian excursion as defined in (4.8), P is a rate one Poisson point process
on R2+ independent of ẽγ̄, and G (2ẽγ̄, γ̄ẽγ̄,P ) is as defined in Section 4.1.

This section is organized as follows. We start in Section 7.1 where we will give an alternative
construction of the law Pcon from an ordered p-tree by tilting this distribution appropriately.
In Section 7, we study the scaling limit of a random connected graph without applying the tilt.
Finally in Section 7.3, we prove the tightness of the tilt and complete the proof of Theorem 7.3.

7.1. Distribution of connected components and tilted p-trees. Recall that Tord
m denotes the

space of ordered trees on m vertices. We start by introducing the following randomized Depth
First Search (rDFS) procedure, which takes a graph G ∈ Gcon

m as the input and gives a random
ordered tree in Tord

m , denote by Γp(G), as its output. Given G ∈ Gcon
m , the rDFS consists of two

stages:
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I. Selection of a root: Pick v(1) ∈ [m] at random with the distribution p. The vertex v(1) is
the starting point of the rDFS algorithm on the graph G and also the root of the ensuing tree
Γp(G).

II. Depth-First-Search: At each step 1 É i É m, we will keep track of three types of vertices.

(a) The set of already explored vertices, O (i ).
(b) The set of active verticesA (i ). We view A as a vertical stack with A (i ) denoting the state of

the stack in the end at the i -th step.
(c) The set of unexplored vertices U (i ) := [m] \ (A (i )∪O (i )).

Initialize with A (0) = {v(1)}, O (0) =;. At step i Ê 1, let v(i ) denote the vertex on top of the stack
A (i −1) and let

D(i ) := {u ∈U (i −1) : (v(i ),u) ∈ E(G)} ,

namely D(i ) is the set of unexplored neighbors of v(i ). Let dv(i ) = |D(i )| and suppose D(i ) ={
u( j ) : 1 É j É dv(i )

}
. Then update the stack A (·) in the following manner:

(i) Randomization: Generate π=π(i ) a uniform random permutation on [d(i )].
(ii) Delete v(i ) from A (i −1).

(iii) Arrange the vertices D(i ) on top of the stack A (i −1) using the order π generated in (i).

Define A (i ) to be the state of the stack A after the above operations. As sets, A (i ) =A (i −1)∪
D(i ) \ {v(i )}. Define O (i ) :=O (i −1)∪ {v(i )} and U (i ) :=U (i −1) \D(i ).

Note that in the above rDFS algorithm, we have |O (i )| = i for i ∈ [m]. Thus after m steps
we complete the exploration of all vertices in G . At the end of the procedure we are left
with a rooted random tree Γp(G) ∈ Tord

m with v(1) as the root and with edge set E(Γp(G)) :=
{(v(i ),u) : i ∈ [m], u ∈D(i )}. Carrying the order {π(i ) : i ∈ [m]} used to order the vertices at
each stage of the procedure then makes the resulting tree an ordered tree that we explore in
a depth first manner resulting in the order (v(1), . . . , v(m)). This completes the construction of
Γp(G) ∈Tord

m . Note that for fixed G , Γp(G) is a Tord
m -valued random variable.

The rDFS algorithm incorporates randomization in two places: First, the root is chosen ran-
domly using the probability mass function p; second, the children (unexplored vertices) of
each vertex are explored in an uniform random order. Given an ordered tree t ∈ Tord

m , one can
run a depth first search on t in a deterministic manner starting from the root of the tree t and
exploring the children using the associated order of the tree. Let (O (i ),A (i ),U (i ),D(i ) : i ∈ [m])
be the corresponding sets of vertices obtained from this deterministic depth first search of the
tree t. Write P(t,π) for the set of edges {u, v} such that there exists 0 É i É n − 1 such that
u, v ∈A (i ), namely both are active but have not yet been explored. Using terminology from [3]
call this collection of edges, the set of permitted edges. By definition,

P(t) := {
(v(i ), j ) : i ∈ [m], j ∈A (i −1) \ {v(i )}

}
. (7.3)

Write [m]2 for the collection of all possible edges on a graph with vertex set [m] and recall that
E(t) denotes the edge set of t. Call the remaining edges,

F(t) := [m]2 \ (P(t)∪E(t)),

the set of forbidden edges.
For a fixed planar tree t ∈Tord

m , define the subset G(t) ⊂Gcon
m as

G(t) := {
G ∈Gcon

m : E(t) ⊂ E(G) ⊂ E(t)∪P(t)
}

. (7.4)
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For fixed G ∈ Gcon
m , let νdfs(·;G) be the probability distribution of Γp(G) on Tord

m . When G ∉
G(t), by [3, Lemma 7], we have νdfs(t;G) = 0. When G ∈G(t), from the construction, we have

νdfs(t;G) = pr (t)
∏

i∈[m]

1

di (t)!
, (7.5)

where r (t) denotes the root of t and di (t) denotes the number of children of i in t.
Recall the law of an ordered p-tree, denoted byPord(·), as defined in (2.8). Define the function

L :Tord
m →R+ by

L(t) := ∏
(k,`)∈E(t)

[
exp(apk p`)−1

apk p`

]
exp

( ∑
(k,`)∈P(t)

apk p`

)
, t ∈Tord

m . (7.6)

Using L(·) to tilt the distribution of the p-tree results in the distribution

P̃ord(t) :=Pord(t) · L(t)

Eord[L(·)]
, t ∈Tord

m , (7.7)

where Eord[L(·)] denotes the expectation of L(·) with respect to the law Pord.
Now note that given a fixed planar tree t ∈ Tord

m , one can construct a connected random
graph by adding each possible permitted edge (i , j ) ∈P(t) independently with probability qi j =
1− exp(−api p j ). Write νper(·;t) for the probability distribution of this random graph, where
“per” stands for “permitted edges”. Obviously by construction, the support of νper(·;t) is the set
G(t) as defined in (7.4) and has the explicit form,

νper(G ;t) :=1{G∈G(t)}

∏
(i , j )∈P(t)∩E(G)

qi j
∏

(i , j )∈P(t)\E(G)

(1−qi j ). (7.8)

The main result of this section is the following proposition. In words what this result says is
the following: one can sample a connected random graph G ∼ Pcon with distribution in (7.1),
in the following two step procedure:

(a) Generate a random planar tree T̃ using the tilted p-tree distribution P̃ord(·) given in (7.7)
via the tilt L(·).

(b) Conditional on T̃ , add each of the permitted edges (i , j ) ∈P(T̃ ) independently with the
appropriate probability qi j .

Proposition 7.4. For all G ∈Gcon
m and t ∈Tord

m ,

Pcon(G)νdfs(t;G) = P̃ord(t)νper(G ;t). (7.9)

In particular, we have Pcon(G) =∑
t∈Tord

m
P̃ord(t)νper(G ;t).

Proof:. From the definition of νdfs(t;G) and νper(G ;t), the left hand side and right hand side
of (7.9) are non zero if and only if G ∈G(t). When G ∈G(t), using (7.1) and (7.5) for the left hand
side gives

Pcon(G)νdfs(t;G) = 1

Z (p)

∏
(i , j )∈E(G)

(1−e−api p j )
∏

(i , j )∉E(G)
e−api p j ×pr (t)

∏
i∈[m]

1

di (t)!
. (7.10)

To ease notation write di (t) = di for the number of children of vertex i in t. Let us now simplify
the right hand side of (7.9). Using (7.6) and the fact that for a fixed tree t, F(t),P(t) and E(t)
form a partition of all possible edges (denoted by [m]2) on the vertex set [m] gives
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L(t) = ∏
(i , j )∈E(t)

[
eapi p j −1

api p j

] ∏
(i , j )∈P(t)

eapi p j

= pr (t)

am−1

∏
i∈[m]

1

pdi+1
i

∏
(i , j )∈E(t)

(eapi p j −1)
∏

(i , j )∈P(t)

eapi p j

= pr (t)

am−1

∏
i∈[m]

1

pdi+1
i

∏
(i , j )∈[m]2

eapi p j
∏

(i , j )∈E(t)
(1−e−api p j )

∏
(i , j )∈F(t)

e−api p j .

Using the above display, (2.8) and (7.8) we have

P̃ord(t)νper(G ;t) = 1

Eord[L(·)]

∏
i∈[m]

pdi
i

di !
× ∏

(i , j )∈P(t)∩E(G)

(1−e−api p j )
∏

(i , j )∈P(t)\E(G)

e−api p j ×L(t)

=a−(m−1)∏
(i , j )∈[m]2 eapi p j

Eord[L(·)]
∏

i∈[m] pi
×pr (t)

∏
i∈[m]

1

di (t)!
× ∏

(i , j )∈E(G)
(1−e−api p j )

∏
(i , j )∉E(G)

e−api p j ,

where the last display is obtained by using E(G) = E(t)∪ (P(t)∩E(G)) and E(G)c =F(t)∪ (P(t)\
E(G)). Comparing the above expression with (7.10) we have

Pcon(G)νdfs(t;G)

P̃ord(t)νper(G ;t)
= f (p, a,m),

where f (p, a,m) is a constant, independent of t or G . Since both the left and the right hand
sides are probability distributions, f (p, a,m) ≡ 1. This completes the proof. ■

7.2. Convergence of untilted graphs. Using Proposition 7.4, define the probability distribu-
tion ν̃jt(·, ·) on Tord

m ×Gcon
m via the prescription,

ν̃jt(t,G) :=Pcon(G)νdfs(t;G) = P̃ord(t)νper(G ;t), for t ∈Tord
m ,G ∈Gcon

m . (7.11)

This is the main object of interest. Let us first study the simpler object which does not incorpo-
rate the tilt. More precisely define the probability distribution νjt(·, ·) on Tord

m ×Gcon
m as follows:

νjt(t,G) :=Pord(t)νper(G ;t), for t ∈Tord
m ,G ∈Gcon

m . (7.12)

In this section, we will study the limit behavior of νjt and L(t) under νjt. Write (T p,G p) ∼ νjt

for the Tord
m ×Gcon

m -valued random variable with distribution νjt. The main aim of this section
is the following result for the untilted object. The next section studies the tilted version.

Proposition 7.5. Let (T p,G p) be Tord
m × Gcon

m -valued random variable with distribution νjt

viewed as measured metric spaces using the vertex weights p. Then under Assumptions 7.1 and
7.2, as m →∞ we have(

scl
(
σ(p),1

)
G p,L(T p)

) w−→
(
G (2e, γ̄e,P ),exp

(
γ̄

∫ 1

0
e(s)d s

))
.

Before diving into the proof, we start by giving an explicit construction of (T p,G p) from
(X,P ), where X = (Xi : i ∈ [m]) are iid Uniform[0,1] r.v.s and P is an rate one Poisson point
process on R2+, independent of X. The construction is based on [8] which starts by setting up a
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map ψp : (0,1)m → Tord
m as follows. Fix a collection of distinct points x = (xi : i ∈ [m]) ∈ (0,1)m .

Define

F p(u) :=−u +
m∑

i=1
pi1 {xi É u} , u ∈ [0,1]. (7.13)

Assume that there exists a unique point v∗ ∈ [m] such that F p(xv∗−) = minu∈[0,1] F p(u). Set
v∗ to be the root of the tree ψp(x). Define yi := xi −xv∗ for i ∈ [m], and

F exc,p(u) := F p(xv∗ +u mod 1)−F p(xv∗−), 0 É u < 1.

Then F exc,p(1−) = 0 and F exc,p(u) > 0 for u ∈ [0,1). Extend the definition of F exc,p to u ∈ [0,1]
by defining F exc,p(1) = 0. We will use F exc,p to construct a depth-first-search of an ordered tree
whose exploration in this depth first manner is encoded by the function F exc,p. This in turn
defines the tree ψp(x). As before, in this construction we will carry along a set of explored
vertices O (i ), active vertices A (i ) and unexplored vertices U (i ) = [m]\(A (i )∪O (i )), for 0 É i É
m. As before we will view A (i ) as the state of a vertical stack A after i -th step in the depth-
first-search.

Initialize with O (0) =;, A (0) = {
v∗}

, U (0) = [m]\{v(1)}, and define y∗(0) = 0. At step i ∈ [m],
let v(i ) be the value that is on the top of the stack A (i −1) and define y∗(i ) := y∗(i −1)+pv(i ).
Define D(i ) := {

i ∈ [m] : y∗(i −1) < yi < y∗(i )
}
. Suppose D(i ) = {

u( j ) : 1 É i É k
}

where we have
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ordered these vertices in the sequence that they are found in this interval namely

y∗(i −1) < yu(1) < ... < yu(k) < y∗(i ).

Update the stack A as follows:

(i) Delete v(i ) from A .
(ii) Push u( j ), 1 É j É k, to the top of A sequentially (so that u(k) will be on the top of the

stack at the end).

Let A (i ) be the state of the stack after the above operations. Our approach here is not exactly
the same as the one in [8], where in their construction the vertices are pushed to the stack in
the reverse order. However as remarked in [8] this does not effect the resulting distribution of
the tree. Update O (i ) :=O (i −1)∪ {v(i )} and U :=U (i −1) \D(i ).

The tree ψp(x) ∈Tord
m is constructed by putting the edges {(v(i ),u) : i ∈ [m],u ∈D(i )} and us-

ing the order prescribed in the above exploration to make the tree an ordered tree. The fact that
this procedure actually produces a tree is proved in [8]. So far we have given the construction of
a deterministic treeψp(x) using x ∈ (0,1)m . Using the collection of uniform random variables X
then results in ψp(X) being a random ordered tree in Tord

m . It is further shown in [8] that ψp(X)
has the same distribution as an ordered p-tree, i.e., ψp(X) has the law Pord in (2.8).

We use the same notation to denote the various construct in the above construction when
replacing x with X, so that notations such as A (i ), D(i ) and y∗(i ) now correspond to random
objects. Define

H p(u) := height of v(i ) in ψp(X), u ∈ (y∗(i −1), y∗(i )], i ∈ [m]. (7.14)

Extend H p(u) to u = 0 continuously. F exc,p in (7.2) and H p are random elements in D([0,1],R).
The following result was proved [8, Proposition 3 and Theorem 3] under a set of assumptions

stronger than Assumption 7.1. In [8] they also made the remark that their assumptions can be
relaxed. It turns out Assumption 7.1 is a sufficient condition for the same result.

Theorem 7.6. Under Assumptions 7.1, as m →∞ we have(
F exc,p(·)
σ(p)

,σ(p)H p(·)
)

w−→ (e,2e) (7.15)

where e is a standard Brownian excursion.

Proof: By [8, Equation (19)], under the assumptions limm→∞σ(p) = 0 and
limm→∞ pmax/σ(p) = 0, we have as m →∞,

1

σ(p)
F exc,p(·) w−→ e(·). (7.16)

The following lemma can be proved by imitating the proof of [8, Proposition 4]. We relax the
assumption about exponential moments used in [8, Proposition 4] with the bound on pmax as
in Assumption 7.1, and the price is a stronger assumption on pmin. We state the result without
a proof.

Lemma 7.7. Under Assumption 7.1, we have as m →∞,

sup
u∈[0,1]

∣∣∣∣1

2
σ(p)H p(u)− 1

σ(p)
F exc,p(u)

∣∣∣∣ P−→ 0.

The proof of Theorem 7.6 is completed by combining (7.16) and Lemma 7.7. ■
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Remark 4. The proof of [8, Proposition 4] uses large deviation inequalities, this is where the
assumption on exponential moments is used. The use of large deviation inequalities makes the
proof simpler. However, as observed by the authors of [8] (see the remark after the statement
of [8, Theorem 3]), it is possible to prove this result simply by making use of Markov inequality
and Burkholder-Davis-Gundy inequality (instead of large deviation bounds) and it turns out
that Assumption 7.1 is sufficient for this purpose. We will use similar techniques in the proof
of Theorem 3.7, so we omit the proof of Lemma 7.7 to avoid repetition.

Next, we will construct a random graph ψG
p (X) ∈Gcon

m such that (ψG
p (X),ψp(X))

d= (G p,T p) as
defined in Theorem 7.5. For i ∈ [m], let S (i ) := A (i −1) \ {v(i )}. Define the function Am(·) on
[0,1] via

Am(u) := ∑
v∈S (i )

pv , for u ∈ (y∗(i −1), y∗(i )], i ∈ [m]. (7.17)

Define Ām(u) := a Am(u), u ∈ [0,1], where a is the scaling constant in the definition of the edge
probabilities qi j . Recall that P is a rate one Poisson point process on R2+, independent of X.
Let Ām ∩P := {

(x, y) ∈P : y É Ām(x)
}
. For each point (x, y) ∈ Ām ∩P , define

rm(x, y) = inf
{

x ′ Ê x : Ām(x ′) < y
}

. (7.18)

Conditioned on ψp(X), the graph ψG
p (X) is constructed as follows: Suppose Ām ∩ P ={

(xl , yl ) : l ∈ [k]
}
. Then for each l ∈ [k] define il ∈ [m] to be such that y∗(il − 1) < xl < y∗(il ),

and define jl ∈ [m] to be such that y∗( jl ) = rm(xl , yl ). Let ψG
p (X) be the graph obtained by

adding edges (v(il ), v( jl )), l ∈ [k], to ψp(X). There is a small probability that multiple edges are
placed between two vertices if there are multiple points in P that are very close to each other.
In that case, let ψG

p (X) be the simple graph obtained by replacing all multi-edges with simple
edges.

The key observation is that for every edge inP(ψp(X)) of the form (v(i ), v( j )) such that v( j ) ∈
A (i −1) \ {v(i )}, we can find a unique corresponding rectangle in (R+)2 below the path Ā(·):

R(i , j ) := {
(x, y) ∈ (R+)2 : y∗(i −1) É x < y∗(i ), Ām(y∗( j )) < y É Ām(y∗( j )−)

}
.

Notice that these rectangles have the following properties:

• They consist of a partition of
{
(x, y) ∈ (R+)2 : 0 É x < 1, 0 < y É Ām(x)

}
.

• R(i , j ) has width pv(i ) and height apv( j ).
• (v(i ), v( j )) is an edge in ψG

p (X) if and only if R(i , j )∩P 6= ;.

Based on the above observation, since P is a Poisson point process, we have, for (v(i ), v( j )) ∈
P(ψp(X)),

P((v(i ), v( j )) is added to ψp(X)|ψp(X)) = 1−exp
(−apv(i )pv( j )

)
. (7.19)

Further we have P(ψG
p (X) =G|ψp(X) = t) = νper(G ;t) and thus

(ψG
p (X),ψp(X))

d= (G p,T p). (7.20)

Proof of Proposition 7.5: Using (7.15) and Skorohod embedding, we can construct{
F exc,p, H p : m ∈N}

on a common probability spaceΩ1 such that(
F exc,p(·)
σ(p)

,σ(p)H p(·)
)

a.e.−→ (e,2e).
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Let P be a rate one Poisson point process on R2+, independent of
{
F exc,p, H p : m Ê 1

}
and the

almost sure limit e. By (7.20), we can write

(G p,T p) := (ψG
p (X),ψp(X)).

We start with a preliminary lemma analyzing asymptotics for Am(·) in (7.17).

Lemma 7.8. As n →∞, we have

sup
t∈[0,1]

∣∣∣∣F exc,p(t )− Am(t )

σ(p)

∣∣∣∣ a.e.−→ 0.

Proof: By the definition of F exc,p we have

F exc,p(y∗(i )) = ∑
v∈A (i )

pv , for i ∈ [m]. (7.21)

By (7.17), we have

Am(t ) = ∑
v∈S (i )

pv = ∑
v∈A (i−1)

pv −pv(i ), for t ∈ (y∗(i −1), y∗(i )].

Thus

sup
t∈(y∗(i−1),y∗(i )]

|Am(t )−F exc,p(t )|

É|Am(y∗(i ))−F exc,p(y∗(i −1))|+ sup
t∈(y∗(i−1),y∗(i )]

|F exc,p(t )−F exc,p(y∗(i −1))|

=pv(i ) + sup
t∈(y∗(i−1),y∗(i )]

|F exc,p(t )−F exc,p(y∗(i −1))|

Denoting ∆m(δ) := sup0És<tÉ1,|s−t |Éδ |F exc,p(s)−F exc,p(t )|, then we have

sup
t∈[0,1]

∣∣∣∣F exc,p(t )− Am(t )

σ(p)

∣∣∣∣É pmax

σ(p)
+ ∆m(pmax)

σ(p)
.

By Assumption 7.2, we have pmax/σ(p) → 0 and pmax → 0 as m → ∞. In addition, since
supt∈[0,1] |F exc,p(t )/σ(p)−e(t )|→ 0 and e(·) is continuous on [0,1], we have ∆m(pmax)/σ(p) → 0
as m →∞ as well. The proof of Lemma 7.8 is completed. ■

By Lemma 7.8 and the construction of the point process P , since aσ(p) → γ̄, we have(
1

σ(p)
F exc,p,σ(p)H p, Ām ,P

)
a.e.−→ (e,2e, γ̄e,P ).

Thus there exists k ∈N0 such that for all m large enough

Ām ∩P = {
(xl , yl ) : l = 1,2, ...,k

}
.

Recall from Section 4.1 that given any excursion h we can construct a real tree T (h). Let
(v(il ), v( jl )) be as defined below (7.18), r (xl , yl ) be as defined in (4.2) by replacing g with γ̄e,
and q2e be the canonical map [0,1] →T (2e). Then G p and G (2e, γ̄e,P ) are gained by identify
the pairs (v(il ), v( jl )) and (q2e(xl ), q2e(r (xl , yl ))) respectively, for 1 É l É k. Denote

G
p
m := scl

(
σ(p),1

) ·G p and T
p

m := scl
(
σ(p),1

) ·T p.

In order to complete the proof of Proposition 7.5, we will prove the following two lemmas.

Lemma 7.9. G
p
m

a.e.−→G (2e, γ̄e,P ), as m →∞.



24 BHAMIDI, SEN, AND WANG

Proof: By [4, Lemma 4.2], we need to construct, for each m ∈ N, a correspondence Cm be-
tween T

p
m and T (2e) and a measure ξm on the space T

p
m ×T (2e) such that

(i) (v(il ), q2e(xl )) ∈Cm and (v( jl ), q2e(r (xl , yl ))) ∈Cm , for l = 1,2, ...,k.
(ii) ξm(C c

m) → 0 as m →∞.
(iii) D(ξm) → 0 as m →∞, where D(ξm) is the discrepancy defined in (2.3).
(iv) dis(Cm) → 0 as m →∞, where dis(Cm) is the distortion defined in (2.1).

Once the above conditions are verified, by [4, Lemma 4.2], we have

dGHP(G p
m ,G (2e, γ̄e,P )) É (k +1)max

(
1

2
dis(Cm),D(ξm),ξm(C c

m)

)
→ 0,

as m →∞ and therefore Lemma 7.9 is proved.
Now we describe the construction of Cm and ξm . Define

εm := 2 sup
l=1,2,...,k

|rm(xl , yl )− r (xl , yl )|. (7.22)

By definition of r (x, y), we have

e(x) > e(r (xl , yl )) for x ∈ [xl ,r (xl , yl )), l = 1,2, ...,k.

Further by the property of Brownian excursions, for each δ > 0, there exists x ∈
[r (xl , xl ),r (xl , xl )+δ) such that e(x) < e(r (xl , yl )). Since supt∈[0,1] |Ām(t )− γ̄e(t )| a.e.−→ 0, then

|rm(xl , yl )− r (xl , yl )| a.e.−→ 0 as m →∞, for l = 1,2, ...,k.

Thus we have εm
a.e.−→ 0 as m →∞.

Define the correspondence Cm as

Cm := {
(v(i ), q2e(x)) : i ∈ [m], x ∈ [0∨ (y∗(i −1)−εm),1∧ (y∗(i )+εm)]

}
.

By the definition of εm , the condition (i) is automatically satisfied. Define the measure ξm as

ξm({v(i )}× A) := Leb
(
q−1

2e (A)∩ [y∗(i −1), y∗(i )]
)

, (7.23)

for i ∈ [m], A ⊂ [0,1] measurable. Since the map i 7→ v(i ) is 1-1, Cm and ξm above are well
defined. It is easy to check that ξm(Cm) = 1 and D(ξm) = 0, thus the conditions (ii) and (iii) are
also satisfied. We only need to check the condition (iv). If (v(i1), q2e(u1)) and (v(i2), q2e(u2)) are
two elements in Cm . Denote d1 and d2 for the metric on T

p
m and T (2e) respectively. Observe

that if either one is an ancestor of the other, we have

d1(v(i1), v(i2))/σ(p) = H p(y∗(i1))+H p(y∗(i2))−2 inf
t∈[y∗(i1),y∗(i2)]

H p(t ),

otherwise:

d1(v(i1), v(i2))/σ(p) = H p(y∗(i1))+H p(y∗(i2))−2 inf
t∈[y∗(i1),y∗(i2)]

H p(t )+2.
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Thus we have

|d1(v(i1), v(i2))−d2(q2e(u1), q2e(u2))|

É
∣∣∣∣∣σ(p)H p(y∗(ī1))+σ(p)H p(y∗(ī2))−2σ(p) inf

t∈[y∗(ī1),y∗(ī2)]
H p(t )

−2e(u1)−2e(u2)+4 inf
t∈[u1,u2]

e(t )

∣∣∣∣+2σ(p)

É4 sup
t∈[0,1]

∣∣σ(p)H p(t )−2e(t )
∣∣+8∆e(εm)+2σ(p),

where ∆e(δ) = sup0És<tÉ1,|s−t |<δ |e(s)−e(t )|, for δ> 0. Thus the above expression, which is also
a bound on dis(Cm), goes to zero as m →∞. Condition (iv) is verified. The proof of Lemma 7.9
is completed. ■

The last lemma that we need to complete the proof of Proposition 7.5 is the following:

Lemma 7.10. As m →∞,

L(T p) =
[ ∏

(i , j )∈E(T p)

exp(api p j )−1

api p j

]
exp

( ∑
(i , j )∈P(T p)

api p j

)
a.e.−→ exp

(
γ̄

∫ 1

0
e(s)d s

)
.

Proof: By the basic inequality (ex −1)/x É ex for x > 0, we have for t ∈Tord
m ,∏

(i , j )∈E(t)

exp(api p j )−1

api p j
É exp

(
a

∑
(i , j )∈E(t)

pi p j

)
É exp(apmax),

where the last inequality follows using the fact that t is a tree, thus for each (i , j ) ∈ E(t) such
that i is the parent of j we have pi p j É pmaxp j . By Assumption 7.2, we have apmax → 0, thus
the above display goes to one as m →∞. Then notice that∑

(i , j )∈P(T p)

api p j = a
∑

i∈[m]

∑
j∈S (i )

pi p j =
∫ 1

0
Ām(s)d s → γ̄

∫ 1

0
e(s)d s,

as m → ∞, where the last convergence follows since Ām
a.e.−→ γ̄e. The proof of Lemma 7.10 is

thus completed. ■

Completing the proof of Proposition 7.5: The proof follows from Lemma 7.9 and 7.10. ■
7.3. Uniform integrability of the tilt. The last key ingredient in proving Theorem 7.3 we need
is the tightness of L(T p). We start with a concentration inequality on ‖F exc,p‖∞ that allows
us to control the tilt appearing on the right hand side of (7.6). A key step is a concentration
inequality for partial sums when sampling without replacement, a problem studied in a slightly
different setting in [41].

Lemma 7.11. Recall that σ(p) =
√∑m

i=1 p2
i and pmax = maxi∈[m] pi . Assume that

4pmax É x É 16σ2(p)

pmax
. (7.24)

Then we have

P(‖F exc,p‖∞ > x) É 12exp

(
− x2

1024(σ(p))2

)
.
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Proof: Write X1, . . . Xm for the iid U (0,1) random variables used to construct F p which is then
used to construct F exc,p from (7.2). Let X (1) < X (2) < ·· ·X (m) be the corresponding order statistics
and let π denote the corresponding permutation of [m] namely X (i ) = Xπ(i ). Obviously π is a
uniform random permutation. Now by definition

‖F exc,p‖∞ É sup
t∈[0,1]

F p(t )+
∣∣∣∣ inf

t∈[0,1]
F p(t )

∣∣∣∣ . (7.25)

Let us analyze the first term. Define ϑi := −X (i ) +∑i
j=1 pπ( j ), namely the value F p(·) at each

location with a positive jump. Since supt∈[0,1] F p(t ) É supi∈[m] |ϑi |, we consider

P

(
sup

i∈[m]
|ϑi | Ê x

2

)
ÉP

(
sup

i∈[m]

∣∣∣∣−X (i ) + i

m

∣∣∣∣Ê x

4

)
+P

(
sup

i∈[m]

∣∣∣∣∣ i∑
j=1

pπ( j ) − i

m

∣∣∣∣∣Ê x

4

)
:=T1 +T2 (7.26)

Let Fm(u) := n−1 ∑m
i=11{XiÉu}, u ∈ [0,1], denote the empirical distribution function of (Xi : 1 É

i É n) so that Fm(X (i )) = i /m. Thus by the DKW inequality [34]

T1 =P
(

sup
i∈[m]

∣∣Fm(X (i ))−X (i )

∣∣Ê x

4

)
=P

(
sup

u∈[0,1]
|Fm(u)−u| Ê x

4

)
É 2exp(−mx2/8). (7.27)

We now analyze T2. Since p is a probability distribution, for any m/2 É k É m −1, |∑k
j=1 pπ( j ) −

k/m| = |∑m
j=k+1 pπ( j ) − (m −k)/m|. Without loss of generality, assume m is even. Define

p(m, x) :=P
(

sup
k∈[m/2]

∣∣∣∣∣ k∑
j=1

pπ( j ) − k

m

∣∣∣∣∣Ê x

4

)
. Now

T2 É p(m, x)+P
(

sup
m/2ÉkÉm−1

∣∣∣∣∣ k∑
j=1

pπ( j ) − k

m

∣∣∣∣∣Ê x

4

)

É p(m, x)+P
(

sup
m/2ÉkÉm−1

∣∣∣∣∣ m∑
j=k+1

pπ( j ) − m −k

m

∣∣∣∣∣Ê x

4

)

= p(m, x)+P
(

sup
k ′∈[m/2]

∣∣∣∣∣ k ′∑
l=1

pπ(m−l+1) −
k ′

m

∣∣∣∣∣Ê x

4

)
= 2p(m, x). (7.28)

where the last line follows by noting that the permutation π′ defined via π(l ) = π(m − l +1) is
again a uniform permutation on [m]. We are now left with bounding p(m, x). Assume that we
generate π by sequentially drawing without replacement from [m]. For k Ê 1, let Fk denote the
σ-field generated by (π(1), . . . ,π(k)). Writing S0 = 0 and Sk := ∑k

j=1 pπ( j ), k ∈ [m], it is easy to
check that {Yk : k = 0,1, ...,m −1} defined by the following is an Fk -martingale:

Yk := Sk −k/m

m −k
, for k = 0,1, ...,m −1.

Note that supi∈[m/2] |Si − i /m| É m supi∈[m/2] |Yi |, thus

p(m, x) ÉP
(

sup
k∈[m/2]

|Yk | Ê
x

4m

)
, (7.29)
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For h > 0, since exp(hx) > 0 is convex in x, then exp(hYk ) is a sub-martingale. Hence,

P

(
sup

k∈[m/2]
Yk Ê x

4m

)
É exp(− hx

4m
)E

[
exp(hYm/2)

]
. (7.30)

By a similar bound on P
(
infk∈[m/2] Yk É− x

4m

)
and the fact Ym/2

d= −Ym/2, following (7.29) we
have

p(m, x) É 2exp(− hx

4m
)E

[
exp(hYm/2)

]= 2exp(− hx

4m
)E

[
exp

(
2h

m
Sm/2 − h

m

)]
. (7.31)

Now we use the standard technique of bounding the moment generating function of Sm/2 by
repeatedly conditioning on the previous time steps. Note that for 0 < δ< 1/pmax and k ∈ [m/2]
we have

E[exp(δpπ(k+1)) |Fk ] = 1

m −k

∑
j∉{v(i ):i∈[k]}

exp(δp j )

É 1

m −k

∑
j∉{v(i ):i∈[k]}

(1+δp j +δ2p2
j )

É1+ δ

m −k
(1− ∑

j∈[k]
pπ( j ))+ 2δ2σ2(p)

m

Éexp

(
δ

m −k
(1−Sk )+ 2δ2σ2(p)

m

)
, (7.32)

where the second line uses the fact that ex < 1+ x + x2 for x ∈ [0,1] and the third line uses the
fact

∑
j∈[m] pπ( j ) = 1 and k É m/2. Using (7.32) repeatedly in evaluating E[exp(δSk )] for k É m/2,

we have

E[exp(δSk )] =E[
exp(δSk−1)E

[
exp(δpπ(k)) |Fk−1

]]
ÉE

[
exp(δSk−1)exp

(
δ

m − (k −1)
(1−Sk−1)+ 2δ2σ2(p)

m

)]
=E

[
exp

(
m −k

m −k +1
δSk−1

)]
exp

(
2δ2σ2(p)

m

)
exp

(
δ

m −k +1

)
ÉE

[
exp

(
m −k

m −k +1
· m −k +1

m −k +2
δSk−2

)]
exp

(
2 · 2δ2σ2(p)

m

)
×exp

(
δ(m −k)

(m −k)(m −k +1)
+ δ(m −k)

(m −k +1)(m −k +2)

)
.

Proceeding inductively, we have

E[exp(δSk )] ÉE
[

m −k

m
δS0

]
exp

(
k · 2δ2σ2(p)

m
+ (m −k)δ ·

k−1∑
j=0

1

(m −k + j )(m −k + j +1)

)

=exp

(
k · 2δ2σ2(p)

m
+ (m −k)δ · k

m(m −k)

)
.

Note that in the l -th iteration of applying (7.32), δ is replaced by δ(m−k)/(m−k+ l −1), which
is less than δ. Therefore, by assuming δ < 1/pmax, all iterative use of (7.32) are valid. Taking
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k = m/2 in the above inequality, we have

E[exp(δSm/2)] É exp(δ2σ2(p)+δ/2).

Using the above bound with δ= 2h/m in (7.31), we have

p(m, x) É 2exp

(
− hx

4m
+ 4h2σ2(p)

m2
+ h

m
− h

m

)
É 2exp

(
− x2

256σ2(p)

)
, (7.33)

where the last inequality follows from taking h = mx/32σ2(p). By our choice of δ and h, the
restriction δ< 1/pmax reduces to the upper bound in the assumption (7.24).

Now combining (7.27), (7.28) and (7.24), we have

P

(
sup

t∈[0,1]
F p(t ) Ê x

2

)
≤P

(
sup

i∈[m]
|ϑi | Ê x

2

)
É 2exp

(
−mx2

8

)
+4exp

(
− x2

256σ2(p)

)
. (7.34)

This tackles the first term in (7.25). To deal with the second term, define ϑ′
i =−X (i ) +∑i−1

j=1 pπ( j )

so that for ϑi as defined after (7.25), ϑi =ϑ′
i +pπ(i ). Then∣∣∣∣ inf

t∈[0,1]
F p(t )

∣∣∣∣= sup
i∈[m]

|ϑ′
i | É sup

i∈[m]
|ϑi |+pmax.

By assumption we have pmax < x/4, using we have

P

(
| inf

t∈[0,1]
F p(t )| Ê x

2

)
ÉP

(
sup

i∈[m]
|ϑi | Ê x

4

)
É 2exp

(
−mx2

32

)
+4exp

(
− x2

1024σ2(p)

)
.

This together with (7.25), (7.34) and the fact mσ2(p) Ê 1 completes the proof of Lemma 7.11. ■
Corollary 7.12. For any B > 0 satisfying

pmax

[σ(p)]3/2
É
p

1/8B , (7.35)

there exists K7.12 = K7.12(B) such that

E[exp(B‖F exc,p‖∞/σ(p))] É K7.12.

Proof: By the trivial bound ‖F exc,p‖∞ É 1, we have

E

[
exp

(
B‖F exc,p‖∞

σ(p)

)]
=

∫ 1/σ(p)

0
B exp(B y)P

(‖F exc,p‖∞ Ê yσ(p)
)

d y.

(7.36)

Decomposing the integral over the intervals [0,4pmax/σ(p)], [4pmax/σ(p),16σ(p)/pmax] and
[16σ(p)/pmax,1/σ(p)], applying Lemma 7.11 to the second interval gives

E

[
exp

(
B‖F exc,p‖∞

σ(p)

)]
É4B pmax

σ(p)
exp

(
4pmax

σ(p)

)
+

∫ 16σ(p)/pmax

4pmax/σ(p)
B exp

(
B y − y2

1024

)
d y

+P(‖F exc,p‖∞ > 16σ2(p)/pmax
) ·exp

(
B

σ(p)

)
,

:=B1 +B2 +B3. (7.37)



CONTINUUM LIMIT OF INHOMOGENEOUS RANDOM GRAPHS 29

For the first two terms above, using (7.35) and σ(p) É 1, we have

B1 É 4Bp
8B

exp

(
4p
8B

)
, B2 É

∫ ∞

0
B exp

(
B y − y2

1024

)
d y.

For B3, using (7.35) and Lemma 7.11, we have

B3 É 12exp

(
− σ2(p)

4p2
max

+ B

σ(p)

)
É 12exp

(
− B

σ(p)

)
= 12e−B . (7.38)

The proof of Corollary 7.12 is completed. ■
Corollary 7.13. Assume that γ> 0, B1 > 0, and B2 ∈ (0,1/

√
8γB1] satisfy

aσ(p) É B1,
pmax

[σ(p)]3/2
É B2.

Let T p be a Tord
m -valued random variable with distribution Pord, and L(·) be as defined in (7.6).

Then there exists a constant K7.13 = K7.13(γ,B1,B2) > 0 such that

E[Lγ(T p)] < K7.13.

In particular, when pmax/[σ(p)]3/2 → 0 and aσ(p) → γ̄ as m →∞, the sequence
{
L(T p) : m Ê 1

}
is uniformly integrable.

Proof: Recall F exc,p from (7.13) and Ām from below (7.17). Let X = (Xi : i ∈ [m]) be the iid
Uniform[0,1] random variables used in the definition of F exc,p and Ām . Define T p = ψp(X)
thus T p has the law Pord. We have

L(T p) É exp(apmax)exp

(∫ 1

0
Ām(s)d s

)
É exp(B1B2)exp

(
B1‖F exc,p‖∞

σ(p)

)
,

where the last inequality uses the fact ‖Am‖∞ É ‖F exc,p‖∞ (see the proof of Lemma 7.8). Then
the corollary directly follows from Corollary 7.12, and we have K7.13 = eγB1B2 K7.12(γB1). Taking
γ> 1 we have the uniform integrability of L(T p). ■

Now we are ready to give the proof of Theorem 7.3.
Proof of Theorem 7.3: Denote sclm for the scaling operator

sclm = scl
(
σ(p),1

)
.

Let (T p,G p) has the law νjt as in (7.12), and (T̃ p, G̃ p) has the law ν̃jt as in (7.11). We want to
show that for any bounded continuous function f (·) on S ,

E[ f (sclm ·G̃ p)] → E[ f (G (2ẽγ̄, γ̄ẽγ̄,P ))], as m →∞.

Define g f (t) for t ∈Tord
m as

g f (t) := ∑
G∈Gcon

m

f (sclm G)νper(G ;t).

By the definition of νjt and ν̃jt, we have E[ f (sclm G p) |T p] = g f (T p) and E[ f (sclm ·G̃ p) | T̃ p] =
g f (T̃ p). Then by (7.7), we have

E[ f (sclm ·G̃ p)] = E[g f (T̃ p)] = E[g f (T p)L(T p)]

E[L(T p)]
= E[ f (sclm G p)L(T p)]

E[L(T p)]
. (7.39)
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By Proposition 7.5 we have the joint convergence

L(T p)
w−→ exp

(
γ̄

∫ 1

0
e(s)d s

)
,

f (sclm G p)L(T p)
w−→ f (G (2e, γ̄e,P ))exp

(
γ̄

∫ 1

0
e(s)d s

)
.

By (7.39), the above convergence and the uniform integrability of L(T p) (Lemma 7.13), we
have

lim
m→∞E[ f (sclm ·G p)] =

E
[

f (G (2e, γ̄e,P ))exp
(
γ̄

∫ 1
0 e(s)d s

)]
E
[

exp
(
γ̄

∫ 1
0 e(s)d s

)] = E[
f (G (2ẽγ̄, γ̄ẽγ̄,P ))

]
,

where ẽγ̄ is the tilted Brownian excursion defined in (4.8). The proof of Theorem 7.3 is com-
pleted. ■

8. SIZE-BIASED REORDERING AND COMPONENT EXPLORATION

Recall the definition of Z = (Zi : i Ê 1) as in (4.6). From Theorem 4.1, we have( |C (i )
n |

n2/3
: i Ê 1

)
w−→ Z,

as n →∞ in the l 2-topology therefore also in the product topology. The next proposition gives
more asymptotic properties for the weights of vertices in each component.

Proposition 8.1. Recall that C (i )
n is the i -th largest component of G nr

n (w,λ) for i Ê 1. Assume that
the conditions in Assumption 3.1 (a) and (b) hold. Further, assume that wmax = o(n1/3). Then,
for fixed i ≥ 1, we have(

|C (i )
n |

n2/3
,

∑
v∈C (i )

n
wv

n2/3
,

∑
v∈C (i )

n
w 2

v

n2/3

)
w−→

(
Zi , Zi ,

σ3Zi

σ1

)
as n →∞. (8.1)

Proof: We start with the proof of the convergence of component sizes in Theorem 4.1 proved
in [11]. Recall that given a set [n] and an associated weight sequence {wv : v ∈ [n]} with wv > 0,
a size biased reordering is a random reordering of [n] as (v(1), v(2), . . . , v(n)) using the weight
sequence where

P(v(1) = j ) ∝ w j , j ∈ [n], (8.2)

and having selected
{

v(1), . . . , v( j −1)
}
, v( j ) is selected from [n]\

{
v(i ) : 1 É i É j −1

}
with prob-

ability proportional to the corresponding weights wv , v ∈ [n] \
{

v(i ) : 1 É i É j −1
}
.

Now we describe the construction. We simultaneously construct the graph G nr
n (w,λ) and

explore it in a breadth-first manner. For all ordered distinct pairs of vertices (u, v),u, v ∈ [n],u 6=
v let {ξuv : u 6= v ∈ [n]} be a collection of independent exponential random variables with rate

ruv :=
(
1+ λ

n1/3

)
wv

ln
. (8.3)

To initiate the exploration process, start by selecting the first vertex v(1) ∈ [n] using (8.2). For
i ∈ [n] \ {v(1)} arrange the exponential random variables ξv(1)i in increasing order as

ξv(1),v ′(1) < ξv(1),v ′(2) < ·· · .
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The neighbors of v(1) can then be constructed as the set N1 =
{
i : ξv(1),i É xv(1)

}
. Let c(1) = |N1|

and label these c(1) vertices as v(2) = v ′(1), . . . , v(c(1) + 1) = v ′(c(1)), thus in increasing or-
der of the associated exponential random variables. Now explore the neighbors of v(2) not
yet found by the exploration process (i.e. using the collection of random variables ξv(2)u ,
u ∉ {v(1), . . . v(c(1)+1)}) and list them as v(c(1)+2), . . . , v(c(1)+1+c(2)), as before in increasing
order of the values of the associated exponential random variables. Repeat this process with
v(3), . . . , v(c(1)+ 1). Next, move to v(c(1)+ 2). In general, explore all vertices in a generation
and then move to the next generation. If the next generation is empty, then we have finished
exploring a component. Then, we select a new vertex v amongst the yet to be explored ver-
tices with probability proportional to their weight wv and continue as before. It can be easily
checked that the resulting graph has the same distribution as G nr

n (w,λ).
This exploration process results in an ordering of the vertex set [n] as (v(1), v(2), . . . , v(n)).

Consider the walk associated with the process

Sn(0) = 0, Sn(i ) = Sn(i −1)+ c(i )−1. (8.4)

The construction satisfies

(i) the ordering (v(1), v(2), . . . , v(n)) has the same distribution as the size-biased re-ordering
of the vertex set [n] using the vertex weight sequence w.

(ii) The walk {Sn(i ) : i Ê 0} encodes the sizes of components (see [7]) in the following sense.
Write T−k = min{i : Sn(i ) =−k}. The number of vertices in the first component explored
by the walk (not necessarily the largest component) is given by |C̃1| = T−1 the size of the
second component explored by the walk is given by |C̃1| := T−2−T−1 and so on and further
for any j Ê 1

Sn(T− j ) =− j , Sn(i ) >− j for T−( j−1) < i < T− j (8.5)

Thus excursions beyond past minima encode sizes of components in the order seen by the
walk. By [7], Theorem 4.1 was proven in [11] by showing that{

1

n1/3
Sn(sn2/3) : s Ê 0

}
w−→

W λ√
σ3
σ1

,
σ3
σ2

1

(s) : s Ê 0

 . (8.6)

where W λ
κ,σ(·) is the inhomogeneous Brownian motion as in (4.3) and convergence is in the

Skorohod metric D(R+,R). By the techniques in [7], excursions beyond past minima of Sn(·)
arranged in decreasing order converge to excursion beyond past minima of W λ

κ,σ. In this con-
struct, the vertices are ordered in an size-biased-ordering, and the vertices within each com-
ponent consists of a consecutive subsequence of the size-biased-ordering. The next lemma
studied partial sum of a size-biased-ordering in a general setting.

Lemma 8.2. Let w = w(n) = {
w (n)

i > 0 : i ∈ [n]
}

be a set of weights, and u = u(n) = {
u(n)

i : i ∈ [n]
}

be a non-negative function on [n]. Let m = m(n) É n be a increasing sequence of integers. We
omit n in the notation in the rest of the lemma. Let {v(i ) ∈ [n] : i ∈ [n]} be a size-biased random
reordering of the indexes based on the weight w. Denote w(i ) := wv(i ) and u(i ) = uv(i ) for i ∈ [n].
Let wmax := maxi∈[n] wi and umax := maxi∈[n] ui . Define cn := ∑

i∈[n] wi ui /
∑

i∈[n] wi . Assume
that

lim
n

mwmax∑
i∈[n] wi

= 0 and lim
n

umax

mcn
= 0.
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Define Y (t ) := (
∑bmtc

i=1 u(i ))/mcn , for t ∈ [0,∞), with u(i ) := 0 for i > n. Then

sup
t∈[0,1]

|Y (t )− t | P−→ 0, as n →∞.

Remark 5. The above lemma says that the average of the first m values of u(i ) is approximately
cn . The proof is a generalization of [11, Lemma 2.3], which deals with the case when ui ≡ w 2

i
and m = n2/3.

Proof of Lemma 8.2: This follows via the introduction of an extra randomization trick devel-
oped in [7] and also used in [11]. We will give a full proof here. Define

τk := ∑
i∈[n]

w k
i for k = 1,2,3.

For i ∈ [n], let ζi ∼ Exp(mwi /τ1) be independent exponential random variables. Define the
process {N (t ) : t ∈ [0,∞)} as

N (t ) := ∑
i∈[n]

1{ζiÉt }, for t ∈ [0,∞).

Define the process
{
Ỹ (t ) : t ∈ [0,∞)

}
as

Ỹ (t ) := 1

mcn

∑
i∈[n]

u(i )1{ζiÉt }, for t ∈ [0,∞).

Note that by the construction, we have {Y (N (t )/m) : t Ê 0}
d= {

Ỹ (t ) : t Ê 0
}
. Therefore when ε<

1, on the event {|N (t )/m − t | < ε,∀t ∈ [0,2]} we have N (2)/m > 1 and thus

sup
t∈[0,1]

|Y (t )− t | É sup
t∈[0,2]

∣∣∣∣Y (
N (t )

m

)
− N (t )

m

∣∣∣∣
É sup

t∈[0,2]

∣∣∣∣Y (
N (t )

m

)
− t

∣∣∣∣+ sup
t∈[0,2]

∣∣∣∣N (t )

m
− t

∣∣∣∣ .

É sup
t∈[0,2]

∣∣∣∣Y (
N (t )

m

)
− t

∣∣∣∣+ε.

Thus

P

(
sup

t∈[0,1]
|Y (t )− t | > 2ε

)
ÉP

(
sup

t∈[0,2]

∣∣Ỹ (t )− t
∣∣> ε)+P(

sup
t∈[0,2]

∣∣∣∣N (t )

m
− t

∣∣∣∣> ε) . (8.7)

Then we bound the first term on the right hand side of (8.7). Define the filtration Ft :=
σ({ζi É t } : i ∈ [n]) for t Ê 0. Then we have for t > s > 0,

E[Ỹ (t ) |Fs] = 1

mcn

∑
i∈[n]

[
ui1{ζiÉs} +ui1{ζi>s}(1−exp((t − s)mwi /τ1)

]
ÉỸ (s)+ 1

mcn

∑
i∈[n]

(t − s)mwi ui

τ1

=Ỹ (s)+ (t − s).

Therefore, by a supermartingale inequality [40, Lemma 2.54.5] for the supermartingale{
Ỹ (t )− t : t ∈ [0,∞)

}
, we have

P( sup
t∈[0,2]

|Y (t )− t | > ε) É 9

ε

(
|E(Ỹ (2)−2)|+

√
Var(Ỹ (2))

)
. (8.8)
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Using the fact x −x2/2 É 1−e−x É x, it is easy to see that

|E[Ỹ (2)−2]| É 1

mcn

∑
i∈[n]

ui
4m2w 2

i

2τ2
1

= 2m
∑

i∈[n] w 2
i ui

τ1
∑

i∈[n] wi ui
.

For the variance we have

Var(Ỹ (2)) = 1

m2c2
n

∑
i∈[n]

[
u2

i (1−exp(−2mwi /τ1))exp(−2mwi /τ1)
]

É 1

m2c2
n

∑
i∈[n]

2mwi u2
i

τ1
= 2τ1(

∑
i∈[n] wi u2

i )

m(
∑

i∈[n] wi ui )2
.

Similar bound holds for P
(
supt∈[0,2]

∣∣∣N (t )
m − t

∣∣∣> ε) by plugging in f (x) with a special constant

function f (x) ≡ 1. Thus from (8.7) we have

P

(
sup

t∈[0,1]
|Y (t )− t | > 2ε

)

É9

ε

2m
∑

i∈[n] w 2
i ui

τ1
∑

i∈[n] wi ui
+

√√√√2τ1(
∑

i∈[n] wi u2
i )

m(
∑

i∈[n] wi ui )2
+ 2mτ2

τ2
1

+
√

2

m


É9

ε

(
2mwmax

τ1
+

√
2τ1umax

m
∑

i∈[n] wi ui
+ 2mτ2

τ2
1

+
√

2

m

)
The first two terms in the above display goes to zero, because of the assumptions in the lemma.
Since wmax Ê τ2/τ1 and umax Ê cn , the rest two terms also goes to zero. The proof of Lemma 8.2
is completed. ■
Completing the proof of Proposition 8.1: Fix i Ê 1 and let L(n, i ) denote the time when we
start exploring the i -th largest component in the above size-biased construction of Gn(λ,w)
and let R(n, i ) be the time when we complete the exploration of the i -th largest component so
that the size of |C (i )

n | = R(n, i )−L(n, i ). Let L(∞, i ) denote the time of the start of the i -th largest
excursion from zero of W̄ λ

κ,σ(·) and R(∞, i ) denote the end of this excursion where κ,σ are as in
Theorem 4.1. Thus the limiting component sizes are given by Zi = R(∞, i )−L(∞, i ) and further

by [7, 11] L(n, i )/n2/3 w−→ L(∞, i ) and R(n, i )/n2/3 w−→ R(∞, i ).
Let f : R+ → R+ be a monotone non-decreasing function. We will apply Lemma 8.2 to the

case when ui ≡ f (wi ), i ∈ [n], and m = T n2/3 for some large constant T > 0. Define cn( f ) :=∑
i∈[n] wi f (wi )/

∑
i∈[n] wi . Notice that

1

n2/3

∑
v∈C (i )

n

f (wv ) = 1

n2/3

R(n,i )∑
j=1

f (wv( j ))− 1

n2/3

L(n,i )∑
j=1

f (wv( j )).

Thus for any fixed T > 0 and ε> 0

P
( 1

n2/3

∣∣∣ ∑
v∈C (i )

n

f (wv )− cn( f )|C (i )
n |

∣∣∣> ε)

ÉP(
R(n, i ) > T n2/3)+P(

sup
uÉT

∣∣∣∣∣
∑n2/3u

i=1 f (wv(i ))

T n2/3cn( f )
−u

∣∣∣∣∣> ε

2T cn( f )

)
.



34 BHAMIDI, SEN, AND WANG

Taking f (x) = fk (x) := xk for k = 1,2. By Assumption 3.1 (a) we have limn→∞ cn( fk ) =σk+1/σ1.
The assumptions in Lemma 8.2 reduce to wmax = o(n1/3). Thus we can apply Lemma 8.2 to the
second term in the above inequality. Thus first letting n → ∞ and then T → ∞, we have for
k = 1,2, ∣∣∣∣∣∣

∑
v∈C (i )

n
w k

v

n2/3
− cn( fk )

|C (i )
n |

n2/3

∣∣∣∣∣∣ P−→ 0, as n →∞. (8.9)

Notice that for k = 1,2, by Theorem 4.1 we have

cn( fk )
|C (i )

n |
n2/3

w−→ σk+1

σ1
Z1 as n →∞.

Combining the above convergence, (8.9) and the assumption σ2 =σ1, we completes the proof
of Proposition 8.1. ■

9. COMPLETING THE PROOF OF THEOREM 3.3

We shall now combine the various ingredients of the last sections to complete the proof of
Theorem 3.3. We start with the proof of convergence in the product topology.

9.1. Convergence in the product topology. We work under Assumption 3.1 in this section.
Due to the conditional independence given the partition

{
V (i ) : i ∈N}

, as suggested by Propo-
sition 6.1, we can work with each maximal component separately. To ease notation let us work
with the largest component C (1)

n (λ). Without loss of generality, we will work with the probability
space on which the convergence in Proposition 8.1 holds almost surely:(

|C (1)
n |

n2/3
,

∑
v∈C (1)

n
wv

n2/3
,

∑
v∈C (1)

n
w 2

v

n2/3

)
a.e.−→

(
Zi , Zi ,

σ3Zi

σ1

)
. (9.1)

Recall the definition of Mi (λ) in (4.11). Thus we need to prove

scl

(
1

n1/3
,

1

n2/3

)
·C (1)

n (λ)
w−→G

(
2σ1/2

1

σ1/2
3

ẽ
σ1/2

3 /σ3/2
1

Z1
,
σ1/2

3

σ3/2
1

ẽ
σ1/2

3 /σ3/2
1

Z1
,P1

)
. (9.2)

By Proposition 6.1, conditional on the vertices in C (1)
n (λ), the random graph C (1)

n (λ) has the
same distribution as a connected rank-one random graph as in (6.2) using

p =
(

wv∑
u∈C (1)

n
wu

: v ∈C (1)
n

)
, a =

(
1+ λ

n1/3

) (
∑

v∈C (1)
n

wv )2

ln
.

Proof of Theorem 3.3 (i): Our aim is to use Theorem 7.3. Let us first verify the Assumptions
7.1 and 7.2. Notice that the relavant quantities are

σ(p) =
√∑

v∈C (1)
n

w 2
v∑

v∈C (1)
n

wv
, pmax É wmax∑

v∈C (1)
n

wv
, and pmin Ê wmin∑

v∈C (1)
n

wv
.

By (9.1) we haveσ(p) =Θ(n−1/3). Therefore, Assumption 7.1 can be verified with any ε ∈ (0,3η0)
and r ∈ (2+3γ0,∞). Assumption 7.2 is a consequence of (9.1):

lim
n→∞aσ(p) = lim

n→∞
(
∑

v∈C (1)
n

wv )2

ln
·
√∑

v∈C (1)
n

w 2
v∑

v∈C (1)
n

wv
= σ1/2

3

σ3/2
1

Z 3/2
1 := γ̄1.
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Thus Assumption 7.1 and 7.2 are satisfied. Now applying Theorem 7.3 we have

scl

(
σ(p),

1∑
v∈C (1)

n
wv

)
·C (1)

n (λ)
w−→G (2ẽγ̄1 , γ̄1ẽγ̄1 ,P1). (9.3)

By replacing (l ,γ,θ) in the Brownian scaling (4.10) with (1, l 3/2,γl−3/2), we have, for all γ > 0
and l > 0, {

ẽγ(s) : s ∈ [0,1]
} d=

{
1

l 1/2
ẽγ/l 3/2

l (l s) : s ∈ [0,1]

}
. (9.4)

By comparing the two scaling operator in (9.2) and (9.3), we have

scl

(
1

n1/3
,

1

n2/3

)
= scl

 ∑
v∈C (1)

n
wv

n1/3
√∑

v∈C (1)
n

w 2
v

,

∑
v∈C (1)

n
wv

n2/3

 · scl

(
σ(p),

1∑
v∈C (1)

n
wv

)
.

Therefore by Proposition 2.1 and the convergence in (9.1), we have

lim
n→∞scl

(
1

n1/3
,

1

n2/3

)
·C (1)

n (λ) =scl

(√
Z1σ1

σ3
, Z1

)
G (2ẽγ̄1 , γ̄1ẽγ̄1 ,P1)

d=scl

(√
Z1σ1

σ3
, Z1

)
G

(
2

Z 1/2
1

ẽ
σ1/2

3 /σ3/2
1

Z1
(Z1·),

γ̄1

Z 1/2
1

e
σ1/2

3 /σ3/2
1

Z1
(Z1·),P1

)
d=G

(
2σ1/2

1

σ1/2
3

ẽ
σ1/2

3 /σ3/2
1

Z1
,
γ̄1

Z 3/2
1

e
σ1/2

3 /σ3/2
1

Z1
,P1

)
,

where the limit in the first line denote the limit of weak convergence, the second line uses the
scaling in (9.4) with l = Z1 and γ= γ̄1, and the third line use the scaling in (4.14) and the scaling
invariance of P . Collecting the terms in the last display gives (9.2). The proof of Theorem 3.3
(i) is completed. ■
9.2. Convergence in the l 4 metric. We will now strengthen the convergence in (3.1) to conver-
gence in T2 topology. Since λ ∈ R is fixed, we will subsequently drop it from our notation. We
consider the Norros-Reittu model G nr

n (w,λ) in this section. We first require some notation. As
usual, let C (i )

n be the i -th largest component. Denote by |C (i )
n |, the number of vertices C (i )

n . For
v ∈ [n], let Cn(v) denote the component that contains v . For k = 1,2 and i Ê 1, let

Xn(v ;k) := ∑
j∈Cn (v)

w k
j and Xn,i (k) := Xn(v ;k) for any v ∈C (i )

n . (9.5)

For i Ê 1 Define
p(i ) =

(
w j /Xn,i (1) : j ∈C (i )

n

)
.

Let Fptn = σ
({

wv : v ∈C (i )
n

}
iÊ1

)
be the σ-field generated by the partition of weights into

different components. Note that Xn,i (k) is measurable with respect to Fptn .
In the proof of the l 4 convergence, the plan is to treat small components and large compo-

nents differently. Precisely, define α0 = 1/12−η0. For components with |C (i )
n | < nα0 , we will use

trivial bounds on its diameter and total mass; for components with |C (i )
n | Ê nα0 , the following

two lemmas provide the bound we need for these large components.

Lemma 9.1. Let Xn(v ;k) be as above and recall the definition of σk from Section 3.1. Then the
following hold under Assumptions 3.1 and 3.2. For any r > 0, there exists constants n0 > 0 and
K9.1 = K9.1(r,w) > 0 such that
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(a) For all v ∈ [n], n1/12−2η0 É m É n47/48, k = 1,2 and n > n0,

P

(
Xn(v ;k) Ê 32σk+1m

σ1
and |Cn(v)| É m

)
É K9.1

nr
. (9.6)

(b) For all v ∈ [n], n1/12−2η0 É m É n45/48, k = 1,2 and n > n0

P

(
Xn(v ;k) É σk+1m

16σ1
and |Cn(v)| Ê m

)
É K9.1

nr
. (9.7)

The proof of Lemma 9.1 is deferred to Section 11.1.
Let A := 1/16 and A := 32σ3/σ1. Recall α0 = 1/12−2η0. Define the events

En(α0) :=
{

for k = 1,2 and v ∈ [n], |Cn(v)| Ê nα0 implies A|Cn(v)| É Xn(v ;k) É A|Cn(v)|
}

.
(9.8)

Lemma 9.2. Assume that Assumptions 3.1 and 3.2 hold. Let α0 = 1/12−2η0. Then there exists
constants K9.2 > 0 and n0 > 0 such that for all n Ê n0 and η ∈ (0,2σ3/σ1/3

1 ) we have,

1En (α0)1
{

nα0É|C (i )
n |Éηn2/3

}E[
(diam(C (i )

n ))4 |Fptn
]É K9.2

[σ(p(i ))]4
for all i Ê 1.

The proof of Lemma 9.2 will be given in Section 11.2.

Proof of Theorem 3.3 (ii): Since we have

dGHP

(
scl

(
1

n1/3
,

1

n2/3

)
C (i )

n , Mi (λ)

)
É diam

(
C (i )

n
)

n1/3
+diam(Mi (λ))+ mass

(
C (i )

n
)

n2/3
+mass(Mi (λ)),

to prove convergence in T2 topology, it is enough to show that for any ε> 0

limsup
N→∞

limsup
n→∞

[
P

( ∑
iÊN

diam4(C (i )
n )

n4/3
> ε

)
+P

( ∑
iÊN

Xn,i (1)4

n8/3
> ε

)]
= 0. (9.9)

First we consider the first term in (9.9). Fix α0 := 1/12−2η0. Notice that

1

n4/3

∑
i≥1
1{

|C (i )
n |<nα0

} diam4(C (i )
n ) ≤ n ·n4α0

n4/3
= 1

n8η0
.

So it is enough to focus on the components with size at least nα0 . Recall En(α0) as in (9.8). We
will first show

P
(
En(α0)c)→ 0 as n →∞. (9.10)

By Lemma 9.1 (b), there exist n1 such that when n > n1, for k = 1,2,

P

(
∃v ∈ [n] with |Cn(v)| Ê nα0 and Xn(v ;k) Ê 32σk+1

σ1
|Cn(v)|

)

ÉP(|C (1)
n | > n3/4)+ ∑

v∈[n]

n3/4∑
m=nα0

P

(
|Cn(v)| = m and Xn(v ;k) Ê 32σk+1

σ1
|Cn(v)|

)
ÉP(|C (1)

n | > n3/4)+n ·n3/4 · K9.1

n2
= o(1),
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where the third line is a consequence of (9.6) with r = 2. By a similar argument and an applica-
tion of (9.7), we can show that

P

(
∃v ∈ [n] with |Cn(v)| Ê nα0 and Xn(v ;k) É σk+1

16σ1
|Cn(v)|

)
= o(1).

Noticing σ3 ≥σ2 =σ1, we then have (9.10).
Fix η ∈ (0,2σ3/σ1/3

1 ) (the upper bound of η is due to Lemma 9.2) and by Theorem 4.1 we

can find Nη such that P
(∑

iÊNη
n−4/3|C (i )

n |2 > η
)
É η for all n Ê 1. Let Gn(α0,η) := En(α0) ∩{∑

iÊNη
n−4/3|C (i )

n |2 É η
}

. Let
∑

1 denote sum over all components C (i )
n for which i Ê Nη and

|C (i )
n | Ê nα0 . Then

P
(∑

1 n−4/3 diam4(C (i )
n ) > ε) (9.11)

ÉE
[
1

{
Gn(α0,η)

}
P

(∑
1 n−4/3 diam4(C (i )

n ) > ε
∣∣∣Fptn

)]
+P(En(α0)c )+η.

É 1

εn4/3
E
[
1

{
Gn(α0,η)

}∑
1E

(
diam4(C (i )

n )
∣∣∣Fptn

)]
+P(En(α0)c )+η.

By Lemma 9.2, there exist n2 such that for n Ê n2,

1

εn4/3
E
[
1

{
Gn(α0,η)

}∑
1E

(
diam4(C (i )

n )
∣∣∣Fptn

)]
(9.12)

É 1

εn4/3
E

[
1

{
Gn(α0,η)

}∑
1

K9.2

[σ(p(i ))]4

]
É K9.2

εn4/3
E
[
1

{
Gn(α0,η)

}∑
1 |C (i )

n |2]É ηK9.2

ε
,

where the last line uses the fact [σ(p(i ))]2|C (n)
n | ≥ 1 and the definition of Gn(α0,η0).

Combining (9.10), (9.11), and (9.12), we arrive at

limsup
n

P
(
n−4/3

∑
1 diam4(C (i )

n ) > ε
)
É η+ ηK9.2

ε

Since η can be arbitrarily small, we conclude that

limsup
N→∞

limsup
n→∞

P

(
n−4/3

∑
iÊN

diam4(C (i )
n ) > ε

)
= 0. (9.13)

Next, we consider the second term in (9.9). For components with |C (i )
n | < nα0 , on the event{

for all v ∈ [n], |Cn(v)| < nα0 implies Xn(v,1) ≤ 32nα0
}

, (9.14)

we have
1

n8/3

∑
i≥1
1{

|C (i )
n |<nα0

}Xn,i (1)4 ≤ 324n · n4α0

n8/3
≤ 324

n4/3
. (9.15)

By (9.6), the event in (9.14) occurs with high probability and this take care of the small compo-
nent. For components with |C (i )

n | ≥ nα0 we have

1
{
Gn(α0,η)

}∑
1

Xn,i (1)4

n8/3
É1{

Gn(α0,η)
}∑

1

A
4|C (i )

n |4
n8/3

É A
4
η
|C (1)

n |2
n4/3

(9.16)

Since η is arbitrary and |C (1)
n |/n2/3 is tight, combining (9.15) and (9.16), we conclude that

limsup
N→∞

limsup
n→∞

P

(
n−8/3

∑
iÊN

Xn,i (1)4 > ε
)
= 0.

This together with (9.13) yields (9.9) and completes the proof of Theorem 3.3 (ii). ■
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10. TAIL BOUNDS FOR HEIGHT OF p TREES: PROOF OF THEOREM 3.7

For the convenence of reference, we restate the assumptions in Theorem 3.7 as follows.

Assumption 10.1. There exists ε0 ∈ (0,1/2) and r0 ∈ (2,∞) such that

σ(p) É 1

210
,

pmax

[σ(p)]3/2+ε0
É 1,

[σ(p)]r0

pmin
É 1,

We will prove the following lemma in this section.

Lemma 10.2. Assume the setting of Theorem 3.7. Then for any integer r Ê br0/2ε0c+ 1, there
exists a constant K10.2 = K10.2(r ) > 0 such that

P

(
ht(T ) Ê x

σ(p)

)
É K10.2

xr
, for 1 É x É [σ(p)]−2ε0 .

Using Lemma 10.2, we prove Theorem 3.7 as follows.
Proof of Theorem 3.7: Note that P(ht(T ) > m) = 0. Take any r Ê br0/2ε0c+1, we only need

to show that (3.4) holds for all [σ(p)]−2ε0 < x É mσ(p). Define r ′ := b(r0−1)r /(2ε0)c+1. Then we
have r ′ ≥ r ≥ br0/2ε0c+1, thus we can apply Lemma 10.2 with r ′. For [σ(p)]−2ε0 < x É mσ(p),
we have

P

(
ht(T ) Ê x

σ(p)

)
ÉP

(
ht(T ) Ê [σ(p)]−2ε0

σ(p)

)
É K10.2(r ′)[σ(p)]2ε0r ′ É K10.2(r ′)

[σ(p)]r0r

[σ(p)]r
.

By Assumption 10.1, [σ(p)]r0 É pmin É 1/m. Then we have

P

(
ht(T ) Ê x

σ(p)

)
É K10.2(r ′)

1

[mσ(p)]r
É K10.2(r ′)

xr
,

for all [σ(p)]−2ε0 < x É mσ(p). Defining K3.7(r ) := K10.2(b(r0 −1)r /(2ε0)c+1), we complete the
proof of Theorem 3.7. ■

The goal of the rest of this section is to prove Lemma 10.2. We will derive quantitative ver-
sions of some of the results of [8]. We will also use the techniques developed in [19]. Recall that
T is a rooted tree with vertex set labelled by [m] and so given a vertex v ∈ T , we can letA(v)
be the set of ancestors of v . More precisely, writing ht(v) for the height of vertex v ∈T and the
path from the root ρ to v as u0 = ρ,u1, . . . ,uht(v)−1,uht(v) = v , thenA(v) = {

u0, . . . ,uht(v)−1
}
. Let

G (v) := ∑
u∈A(v) pu . Recall the function F exc,p in (7.2) used to construct T . In particular recall

that for each vertex v ∈ T , there was an i such that we find the children of v in the interval
[y∗(i −1), y∗(i )). Define e(v) = y∗(i ). Fix x > 0 and define the events

B1 :=
{

max
v∈[m]

F exc,p(e(v))

σ(p)
Ê x

8

}
, (10.1)

B2 :=
{

max
v∈[m]

F exc,p(e(v))

σ(p)
É x

8
, max

v∈[m]

(
G (v)

2σ(p)
− F exc,p(e(v))

σ(p)

)
Ê x

8

}
, (10.2)

and finally

B3 :=
{

max
v∈[m]

G (v)

2σ(p)
É x

4
,ht(T ) Ê x

σ(p)

}
. (10.3)

Thus

P

(
ht(T ) Ê x

σ(p)

)
ÉP(B1)+P(B2)+P(B3). (10.4)

We will bound each one of the terms on the right individually in Lemmas 10.3, 10.6 and 10.4.
Using these three lemmas, we give the proof of Lemma 10.2 as follows:
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Proof of Lemma 10.2: This directly follows from the bounds in Lemmas 10.3, 10.6 and 10.4.
■
10.1. Analysis of the event B1. We start by bounding P(B1) in the following lemma.

Lemma 10.3. Under Assumption 10.1,

P(B1) É 12e−x2/216
for 1 É x É 128[σ(p)]−2ε0 . (10.5)

Proof: Replacing x by xσ(p)/8 in Lemma 7.11, we have the same bound as in (10.5), but for
all x such that

32pmax

σ(p)
É x É 128σ(p)

pmax
.

Then by Assumption 10.1, we have 32pmax/σ(p) ≤ 32[σ(p)]1/2 ≤ 1 and 128σ(p)/pmax ≥
128[σ(p)]−1/2−ε0 ≥ 128[σ(p)]−2ε0 . This completes the proof of Lemma 10.3. ■
10.2. Analysis of the event B3. We will prove the following bound on P(B3)

Lemma 10.4. Under Assumption 10.1, for each integer r Ê br0/2ε0c+ 1, there exist a constant
K10.4 = K10.4(r ) such that

P(B3) É K10.4

xr
for x Ê 1. (10.6)

Proof: Note that on the set B3, there exists a vertex v ∈T such that

(a) The height of this vertex satisfies x/σ(p) É ht(v) É x/σ(p)+1.
(b) For this v ,

σ(p)ht(v)− G (v)

σ(p)
Ê x

2
.

Thus

P(B3) É 1

pmin

∑
v∈[m]

pv E

(
1

{
σ(p)ht(v)− G (v)

σ(p)
Ê x

2
,ht(v) É x

σ(p)
+1

})
= 1

pmin
P

(
σ(p)ht(V)− G (V)

σ(p)
Ê x

2
,ht(V) É x

σ(p)
+1

)
=:

1

pmin
P(B4), (10.7)

where V with distribution independent of T is a vertex selected from T with P(V = j ) = p j .
By [19, Corollary 3],

(ht(V),G (V))
d=

(
T −2,

T−1∑
i=1

pξi

)
, (10.8)

where (ξi : i Ê 1) are iid with distribution p namely P(ξi = j ) = p j for j ∈ [m] and T is the first
repeat time of this sequence namely

T = min
{

j Ê 2 : ξ j = ξi for some 1 É i < j
}

.

Hence

P(B4) =P
(

(T −2)σ(p)−
∑T−1

i=1 pξi

σ(p)
Ê x

2
, σ(p)(T −2) É x +σ(p)

)

ÉP
(

(T −1)−
∑T−1

i=1 pξi

(σ(p))2
Ê x

2σ(p)
, (T −1) É x +2σ(p)

σ(p)

)
. (10.9)
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Define the random variables X j = pξ j /(σ(p))2 −1. The we have

P(B4) ÉP
(

max
1É jÉ2+x/σ(p)

|S j | Ê x

2σ(p)

)
. (10.10)

Notice that the sequence
{
S j : j Ê 1

}
obtained by setting S j = ∑ j

i=1 X j is a martingale. The fol-
lowing lemma is a basic concentration result about S j .

Lemma 10.5. For each integer r Ê 1, there exists a constant K10.5 = K10.5(r ) > 0, such that for all
k Ê 1 and t > 0, we have

P

(
max

1É jÉk
|S j | Ê t

)
É K10.5 ·

kr p2r
max

t 2r [σ(p)]4r
.

Proof: By the Markov inequality and the Burkholder-Davis-Gundy inequality, for any integer
r > 0, we have

P

(
max

1É jÉk
|S j | Ê t

)
É E

[
max1É jÉk |S j |2r

]
t 2r

ÉC1(r )
E
[

(
∑k

j=1 X 2
j )r

]
t 2r

, (10.11)

where C1(r ) is the constant that shows up in the Burkholder-Davis-Gundy inequality and only

depends on r . Notice that |X1| ≤ max
{

pξ1
σ2(p)

,1
}
≤ pmax/σ2(p). We have

E

[
(

k∑
j=1

X 2
j )r

]
Ékr E[|X1|2r ] É kr p2r

max

[σ(p)]4r
. (10.12)

Combining (10.11) and (10.12) proves the bound in Lemma 10.5 with K10.5(r ) =C1(r ). ■
Applying Lemma 10.5 to (10.10) with t = x/2σ(p) and k = 2x/σ(p) > 2+ x/σ(p), we have for

r Ê 1

P(B4) É K10.5(r )

(
2σ(p)

x

)2r

·
(

2x

σ(p)

)r

· p2r
max

[σ(p)]4r
= K10.5(r )23r

xr
· p2r

max

[σ(p)]3r
.

Taking r Ê br0/2ε0c+1, by Assumption 10.1, (10.7) and the above bound we have

P(B3) É K10.5(r )23r

xr
· 1

[σ(p)]r0
· [σ(p)]2r ε0 É K10.5(r )23r

xr
for x Ê 1,

The proof of Lemma 10.4 is completed with K10.4(r ) := K10.5(r )23r . ■

10.3. Analysis of the event B2. Let us now analyze B2. In this section, we will prove:

Lemma 10.6. Under Assumption 10.1, for each integer r Ê br0/2ε0c+1, there exists a constant
K10.6 = K10.6(r ) such that

P(B2) É K10.6

xr
for 1 É x É 8[σ(p)]−2ε0 . (10.13)

Proof: The event B2 consists of two events happening concurrently: (a) the sum of weights
p j on the path to some vertex v from the root, namely G (v) =∑

j∈A(v) p j is “large”, whereA(v)
are the set of ancestors of v ; (b) the maximum value of the excursion F exc,p being small. We
start with the following proposition.
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Proposition 10.7. Under Assumption 10.1, for each integer r Ê r0, there exists a constant K10.7 =
K10.7(r ) such that

P

(
max
v∈[m]

G 2(v) Ê xσ(p)

)
É K10.7

xr
for all

1

8
É x É [σ(p)]−2ε0 .

Proof: We have

P

(
max
v∈[m]

G 2(v) Ê xσ(p)

)
ÉP(B5)+P(B6) (10.14)

where

B5 :=
{

max
v∈[m]

G (v) Ê
√

xσ(p), ht(T ) É
p

x

2[σ(p)]3/2

}
,

and

B6 :=
{

ht(T ) Ê
p

x

2[σ(p)]3/2

}
.

Arguing as in (10.7), we see that,

P(B5) É 1

pmin
P

(
G (V) Ê

√
xσ(p), ht(V) É

p
x

2[σ(p)]3/2

)
(10.15)

where as beforeV is selected from [m] independent of T using the probability vector p. Using
the distributional representation (10.8) we get, when x Ê 1/8

P(B5) = 1

pmin
P

(
T−1∑
i=1

pξi

(σ(p))2
Ê

p
x

[σ(p)]3/2
, T −2 É

p
x

2[σ(p)]3/2

)

É 1

pmin
P

(
T−1∑
i=1

(
pξi

(σ(p))2
−1

)
Ê

p
x

2[σ(p)]3/2
, T −1 É

p
x

[σ(p)]3/2

)

É 1

pmin
P

(
max

1ÉkÉpx/[σ(p)]3/2
Sk Ê

p
x

2[σ(p)]3/2

)
,

where the second line uses the fact that
p

x/(2[σ(p)]3/2) Ê 1/(16[σ(p)]3/2) > 1, and Sk in
the third line is as defined after (10.9). Using Lemma 10.5 with k = p

x/[σ(p)]3/2 and t =p
x/(2[σ(p)]3/2) in last display, for x Ê 1/8 and r ′ Ê 2r0 we have

P(B5) É K10.5(r ′)
pmin

(
2[σ(p)]3/2

p
x

)2r ′

·
( p

x

[σ(p)]3/2

)r ′

· p2r ′
max

[σ(p)]4r ′ =
K10.5(r ′)22r ′

pmin
· 1

xr ′/2
· p2r ′

max

[σ(p)]5r ′/2

É K10.5(r ′)22r ′

[σ(p)]r0
· 1

xr ′/2
· [σ(p)]3r ′

[σ(p)]5r ′/2
É K10.5(r ′)22r ′

xr ′/2
,

where the second line uses [σ(p)]r0 /pmin É 1 and pmax É [σ(p)]3/2. Hence, let r ′ = 2r in the
above display, we have when x Ê 1/8, r Ê r0,

P(B5) É K10.5(2r )24r

xr
. (10.16)

To finish the proof for Proposition 10.7, we need to bound P(B6). We will in fact give exponen-
tial tail bounds for this event. Arguing as before and using the distributional representation in
(10.8) we first get

P(B6) É 1

pmin
P

(
ht(V) Ê

p
x

2[σ(p)]3/2

)
É 1

pmin
P

(
T Ê

p
x

2[σ(p)]3/2

)
, (10.17)
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where as before T is the first repeat time of the sequence
{
ξ j : j Ê 1

}
where ξ j ∼ p are iid. We

will prove the following tail bound for T .

Lemma 10.8. For 0 < t < 1/pmax, we have

P (T Ê t ) É 2exp

(
− t 2σ2(p)

24

)
.

Proof: We will need an alternative construction of the random variable T , (see [19, Section
4]), where we essentially construct the sequence

{
ξ j : j Ê 1

}
in continuous time. The advan-

tage of this construction is reflected in (10.20) below. Using p = (p1, . . . , p j ), partition the unit
interval [0,1] as

{
I j : j ∈ [m]

}
where I j has length p j . Consider a rate one poisson process N

on R+× [0,1]. We can represent N = {(S0,U0), (S1,U1), . . .} where S0 < S1 < ·· · are points of a
rate one Poisson process on R+ and U j are iid uniform random variables. Abusing notation,
write N (t ) for the number of points in (0, t ]× [0,1] and N (t−) for the number of points in
(0, t )× [0,1]. Now write ξ j = ∑m

i=1 i1
{
U j ∈ Ii

}
. In this continuous time construction, as before

let T denote the first repeat time of the sequence
{
ξ j : j Ê 1

}
and write S for the actual “time”

namely S = inf{s : N (s) > T }. Thus N (S −) =N ((0,S −)× [0,1]) = T . Then we have

P(T Ê t ) ÉP (S É t/2,T Ê t )+P (S Ê t/2) . (10.18)

Let us analyze P (S É t/2,T Ê t ). Note that this event implies that N (t/2) Ê t . Standard tail
bounds for the Poisson distribution then give

P(N (t/2) Ê t ) É exp

(
− t

2
(2log2−1)

)
< e−t/6. (10.19)

Next, we bound P (S Ê t/2). By [19, Equations (26) and (29)], for 0 < t < 1/2pmax we have

logP(S > t ) É− t 2

2
σ2(p)+ t 3pmaxσ

2(p)

3(1− t pmax)
É− t 2σ2(p)

6
. (10.20)

replacing t by t/2 in the above expression, we have for all 0 < t < 1/pmax, P(S > t/2) É
exp(−t 2σ2(p)/24). Combining this bound, (10.19) and the fact tσ2(p) ≤ σ2(p)/pmax É 1 we
completes the proof of Lemma 10.8. ■

Applying Lemma 10.8 with t =p
x/(2[σ(p)]3/2) to (10.17), when 1/8 É x É [σ(p)]−2ε0 , we have

t pmax É pmax/(2[σ(p)]3/2+ε0 ) < 1 and x > x/2+1/16 and therefore we have

P(B6) É 2

pmin
exp

(
− x

96σ(p)

)
É 2

[σ(p)]r0
exp

(
− 1

211σ(p)

)
exp

(
− x

192

)
ÉCe−x/192,

where C := supy≥0 2y r0 e−y/211
. This combined with (10.16) finishes the proof of Proposition

10.7. ■
To complete the analysis of the event B2, we need to strengthen [8, Lemma 10]. We first

setup some notation. Let A ⊂ [m]. We will use this later for the set A(v), the set of ancestors
of a fixed vertex v . Let q be the probability distribution obtained by merging the elements
of A into a single point. More precisely q = (q1, . . . , qm−|A|+1) where q1 = ∑

v∈A pv := p(A) and{
qi : i Ê 2

}
corresponds to the set

{
pi : i ∈ [m] \ A

}
. Let T (1,q) be a q-tree constructed as in

(2.7) with the probability mass function q, conditional on vertex 1 being the root. Denote by
H1 the children of vertex 1. For each v ∈ H1 flip a fair coin (independent for different v) let
c(v) denote the outcome of this flip. Define the random variable

X = ∑
v∈H1

qv1 {c(v) is Head}. (10.21)
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Proposition 10.9. Let A ⊆ [m] and q1 = p(A) and define K10.9 := supyÊ0 ye−y/512. Then

P

(
q1

2
− q2

1

2
−X Ê xσ(p)

)
É K10.9 exp

(
− x2

2q1

)
for x Ê 1/16.

Proof: Let {Ui : i ∈ [m]} be iid Uniform(0,1) random variables (independent of the tree and the
coin tosses as well). Define the random variables

Y := ∑
i∉A

pi1
{
Ui É q1/2

}
.

By [8, Equation 40]

P(X ∈ ·) É 1

q1
P(Y ∈ ·). (10.22)

Consider the centered version

Ỹ = ∑
i∉A

pi

(
1

{
Ui É q1/2

}−q1/2
)

Then note that

P

(
q1

2
− q2

1

2
−Y Ê xσ(p)

)
=P(−Ỹ Ê xσ(p)

)
. (10.23)

By Markov’s inequality, for any λ> 0

P

(
− Ỹ

(σ(p))2
Ê x

σ(p)

)
É exp

(
− λx

σ(p)

) ∏
i∉A

exp

(
λq1pi

2(σ(p))2

)
× ∏

i∉A

[
1− q1

2

(
1−exp

(
− λpi

σ2(p)

))]

The simple inequality 1−x É exp(−x) for x Ê 0 and some algebra gives

P

(
− Ỹ

(σ(p))2
Ê x

σ(p)

)
É exp

(
− λx

σ(p)

) ∏
i∉A

exp

[
q1

2

(
λpi

σ2(p)
−1+exp

(
− λpi

σ2(p)

))]
Since e−u −1+u É u2/2 for all u Ê 0, we finally get

P
(−Ỹ Ê xσ(p)

)É exp

(
− λx

σ(p)

)
exp

(
q1λ

2

4σ2(p)

)
Taking λ= 2xσ(p)/q1, we get

P
(−Ỹ Ê xσ(p)

)É exp

(
−x2

q1

)
.

Using (10.22), (10.23) and x2 Ê x2/2+1/512, we arrive at

P

(
q1

2
− q2

1

2
−X Ê xσ(p)

)
É 1

q1
exp

(
−x2

q1

)
É 1

q1
exp

(
− 1

512q1

)
exp

(
− x2

2q1

)

É K10.9 exp

(
− x2

2q1

)
. (10.24)

The proof of Proposition 10.9 is completed. ■
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For v ∈ [m], set A (v) equal to A (i ) (recall the definition of active vertices A (i ) from Section
7.1) if v = v(i ) is the i -th vertex vertex explored in the depth-first exploration of the tree. If we
fix any A ⊂ [m] and v ∈ [m] and condition a random p-tree onA(v) = A, then by [8, Lemma 11]
we have X É p(A (v)) where X is as in (10.21). Since p(A (v)) = F exc,p(e(v)), we conclude from
Proposition 10.9 that for x Ê 1 and v ∈ [m],

P

(
G (v)

2
− G 2(v)

2
−F exc,p(e(v)) Ê xσ(p)

16

∣∣∣A(v)

)
É K10.9 exp

(
− x2

512p(A(v))

)
.

On the set {G (v) É xσ(p)} we have p(A(v)) =G (v) É xσ(p). Hence, for x Ê 1 and v ∈ [m]

P

(
G (v)

2
− G 2(v)

2
−F exc,p(e(v)) Ê xσ(p)

16
,G (v) É xσ(p)

)
É K10.9 exp

(
− x

512σ(p)

)
.

Since x Ê 1 and m ≤ 1/pmin ≤ [σ(p)]−r0 , this yields

P

(
G (v)

2
− G 2(v)

2
−F exc,p(e(v)) Ê xσ(p)

16
and G (v) É xσ(p) for some v ∈ [m]

)
ÉK10.9m exp

(
− x

512σ(p)

)
É

[
K10.9

[σ(p)]r0
exp

(
− 1

210σ(p)

)]
exp

(
− x

210σ(p)

)
ÉC1e−x/210

,

where C1 := K10.9 supyÊ0 y r0 e−y/1024. Combine the above bound and Proposition 10.7, we have

we have, for 1 É x É 8[σ(p)]−2ε0 and r Ê r0,

P

(
G (v)

2
−F exc,p(e(v)) Ê xσ(p)

8
and G (v) É xσ(p) for some v ∈ [m]

)
(10.25)

ÉC1e−x/210 +P
(

1

2
max
v∈[m]

G (v)2 Ê xσ(p)

16

)
ÉC1e−x/210 + 8r K10.7

xr
.

Define

E :=
{‖F exc,p‖L∞

σ(p)
É x

8

}⋂{
G (v)

2σ(p)
− F exc,p(e(v))

σ(p)
Ê x

8
and

G (v)

σ(p)
É x for some v ∈ [m]

}
.

Then E and B2 are same provided x Ê 2pmax/σ(p). Indeed, if
{‖F exc,p‖L∞ É xσ(p)/8

}
holds and

{G (v0)/2−F exc,p(e(v0)) Ê xσ(p)/8} holds for some v0 with G (v0) É xσ(p), then E is true. On the
other hand, if G (v0) > xσ(p), then there is an ancestor v1 of v0 satisfying xσ(p)/2 É G (v1) É
xσ(p) (this is true since xσ(p) Ê 2pmax). For this v1, we have

G (v1)

2
−F exc,p(e(v1)) Ê xσ(p)

4
− xσ(p)

8
= xσ(p)

8
.

Thus, the event E is still true. Since 2pmax/σ(p) É 1 under Assumption 10.1, we conclude from
(10.25) that for r Ê r0, there exists some constant K10.6(r ) depending only on r such that for
1 É x É 8[σ(p)]−2ε0 , we have

P(B2) =P(E) É K10.6

xr
.

This completes the proof of Lemma 10.6. ■
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Proof of Lemma 10.2: Combining (10.4), (10.5), (10.6) and (10.13), we conclude that, for any
r > max{r0,br0/2ε0c}, there exists some constant K (r ) > 0 such that for all 1 É x É 8[σ(p)]−2ε0 ,
we have

P(ht(T ) Ê xσ(p)) É K (r )

xr
. (10.26)

This completes the proof of Lemma 10.2. ■

11. PROOF OF LEMMA 9.1 AND LEMMA 9.2

11.1. Proof of Lemma 9.1.

Proof of (9.6): For each v ∈ [n], define the random permutation πv as follows: πv (1) = v and
(πv (2), . . . ,πv (n)) is a size-biased permutation of [n]\{v} where size of j is w j . Then (πv (i ) : i ≥
1) has the same law as the sequence of vertices of the random graph G nr

n (w,λ) appear in a size-
biased order during a breadth-first search starting from the vertex v . For ease of notation, we
fix v and write w̄i := wπv (i ) in the rest of the proof.

Hence,

Qv :=P
(

Xn(v ;k) Ê 32σk+1m

σ1
and |Cn(v)| É m

)
≤P

(
m∑

i=1
w̄ k

i Ê 32σk+1m

σ1

)
.

By Assumption 3.1 (a), there exists n1 > 0 such that when n ≥ n1, we have

σk

2
<

∑n
i=1 w k

i

n
< 2σk , for k = 1,2,3. (11.1)

We only give the proof when k = 2, and the case when k = 1 is similar. Let F v
j = σ{πv (i ) : 1 É

i É j }, for 1 ≤ j ≤ m. Note that, for 2 É j É m and n ≥ n1, we have

E
(
w̄ 2

j

∣∣∣F v
j−1

)
=

∑n
i= j w̄ 3

i∑n
i= j w̄i

≤
∑n

i=1 w 3
i∑n

i=1 wi −mwmax
≤ 2σ3n

σ1n/2−mwmax
. (11.2)

By Assumption 3.2, there exists n2 > 0 such that when n ≥ n2,

mwmax ≤ n47/48wmax < σ1n

4
, and w 2

max <
8σ3n1/12−2η0

σ1
≤ 8σ3m

σ1
.

By the above bound and (11.2),

w̄ 2
1 +

m∑
j=2

E[w̄ 2
j |F v

j−1] ≤ w 2
max +m · 8σ3

σ1
< 16σ3m

σ1
.

Thus writing ∆ j := w̄ 2
j −E

[
w̄ 2

j

∣∣∣F v
j−1

]
, by the Burkholder-Davis-Gundy inequality, we have for

any integer r ′ > 0,

Qv ÉP
(
|

m∑
j=2
∆ j | Ê 16σ3m

σ1

)
≤

(
σ1

16σ3m

)2r ′

E

(
m∑

j=2
∆2

j

)r ′

.
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Since ∆ j ≤ w 2
max, and by Assumption 3.2, there exists n3 > 0 such that when n > n3, wmax <

1/n1/48−η0 , therefore

Qv É
(
σ1

16σ3

)2r ′

· w 4r ′
max

mr ′ ≤
(
σ1

16σ3

)2r ′

·
(

n1/12−4η0

m1/12−2η0

)r ′

=
(
σ1

16σ3

)2r ′

· 1

n2η0r ′ . (11.3)

Then taking n0 = max{n1,n2,n3} and r ′ = br /2η0c+1, we have proved (9.6).
Proof of (9.7): The idea is similar to the proof of (9.6). Using the same notation, we have

P

(
Xn(v ;k) É σk+1m

16σ1
and |Cn(v)| Ê m

)
≤P

(
m∑

i=1
w̄ k

i É σk+1m

16σ1

)
.

Then when n is large such that (11.1) is true and

mw 3
max ≤ n45/48w 3

max ≤
σ3n

4
,

we have

E
(
w̄ 2

j

∣∣∣F v
j−1

)
≥

∑n
i=1 w 3

i −mw 3
max∑n

i=1 wi
≥ σ3

8σ1
.

Then we can use a bound similar to (11.3) to complete the proof. Then we choose K9.1 to be
the largest constant shown up in the four bounds. The proof of Lemma 9.1 is completed. ■
11.2. Proof of Lemma 9.2. Note the that in this section, the constant γ0 comes from Assump-
tion 3.1, and the constant η0 comes from Assumption 3.2.

Proof of Lemma 9.2: For convenience, we will write (w 1, . . . , w m) for (w j : j ∈ C (i )
n ), where

m = m(i ) := |C (i )
n |. Let p(i )

j = w j /Xn,i (1) for 1 É j É m and let a(i ) be as in the statement of

Proposition 6.1. Define p (i )
max := max j∈[m] p (i )

j and p (i )

min := min j∈[m] p (i )

j . Further, let L(i )(t) be as

in in (7.6) with a(i ), p(i )
k , p(i )

`
replacing a, pk , p` respectively. In the rest of the proof, we will hide

i from the notation occasionally.
Note that, L(t) Ê 1 for any t ∈ Tord

m . Define P(i )(·) := Pord(·;p(i )) where the latter is defined in
(2.8). Thus, it follows from Proposition 6.1 and Proposition 7.4 that

E
[
(diam(C (i )

n ))4 |Fptn
]É ∫

ht4(t)L(t)d P(i )(t)∫
L(t)d P(i )(t)

É
∫

ht4(t)L(t)d P(i )(t)

É
(∫

ht8(t)d P(i )(t)

)1/2 (∫
L2(t)d P(i )(t)

)1/2

(11.4)

Define r0 := 2γ0/α0 +2 and ε0 := 6η0. Define the events

H (i )
n :=

{
σ(p(i )) É 1

210
,

p (i )
max

[σ(p(i ))]3/2+ε0
É 1,

[σ(p(i ))]r0

p (i )

min

É 1, a(i )σ(p(i )) É 1

16

}
. (11.5)

Then restricted to H (i )
n , applying Theorem 3.7 with r = 9, we have

[σ(p)]8
∫

ht8(t)d P(i )(t) É
∫ ∞

0
8x7P(i )

(
σ(p)ht(t) Ê x

)
d x É 8+

∫ ∞

1
8x7 · K3.7(9)

x9
d x, (11.6)

Restricted to H (i )
n , applying Corollary 7.13 with B1 = 1/16, B2 = 1, and γ= 2, we have∫

L2(t)d P(i )(t) É K7.13

(
2,

1

16
,1

)
. (11.7)
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By (11.4), (11.6) and (11.7), the proof is completed once we show the following: there exist n0

such that for all n Ê n0, we have

En(α0)∩{
nα0 É |C (i )

n | É ηn2/3}⊂ H (i )
n for all i Ê 1. (11.8)

Restricted on En(α0), there exist absolute constants C1,C2,C3,C4 > 0 such that for all i Ê 1
and n Ê 1, we have

C1p
m

Éσ(p(i )) =
√

Xn,i (2)

Xn,i (1)
É C2p

m
,

pmax É C3wmax

m
, pmin Ê C4wmin

m
.

The following calculation will be restricted to En(α0)∩{
nα0 É |C (i )

n | É ηn2/3
}
. Note that

p (i )
max

[σ(p(i ))]3/2+ε0
É C3wmax/m

(C1/
p

m)3/2+ε0
= C2

C 3/2+ε0
1

· wmax

m1/4−ε0/2

É C2

C 3/2+ε0
1

· n1/48−η0

n(1/12−2η0)(1/4−3η0)
≤ C2

C 3/2+ε0
1

· 1

nη0/4
, (11.9)

Similarly
[σ(p(i ))]r0

p (i )

min

É (C2/
p

m)r0

C4wmin/m
= C r0

2

C4
· 1

wminmr0/2−1
≤ C r0

2

C4
· 1

wminnγ0
(11.10)

By, (11.9), (11.10) and Assumption 3.1 (d), there exist n1 such that when n Ê n1, the first three
conditions in (11.5) hold uniformly for all i Ê 1. Now we verify the last condition in (11.5). Let
n2 be such that when n Ê n2, |λ|/n1/3 < 1 and ln > nσ1/2, then when n Ê n2 we have,

a(i )σ(p(i )) =
(
1+ λ

n1/3

)
(Xn,i (1))2

ln
·
√

Xn,i (2)

Xn,i (1)
É 4(A)3/2

σ1
· (m)3/2

n
É 4(A)3/2

σ1
·η3/2 É 1

16
,

since A = 32σ3/σ1 and η< 2σ3/σ1/3
1 . Therefore, when n Ê n0 := max{n1,n2}, the claim (11.8) is

true. The proof of Lemma 9.2 is completed. ■
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