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INTRODUCTION

Transportation, traffic, communication and energy networks form the backbone of

our modern society. To deal with the uncertainty, variation, unpredictability, size and
complexity inherent in these networks, we need to develop radically new ways of thinking.
The ultimate goal is to build self-organizing and intelligent networks.

The NWO-funded Gravitation programme NETWORKS started in the Summer of 2014
and covers a broad range of topics dealing with stochastic and algorithmic aspects of
networks. The aim of the programme is to address the pressing challenges posed by
large-scale networks with the help of stochastics and algorithmics. The focus is on
modelling, understanding, controlling and optimizing networks that are complex and
highly volatile.

In April 2018 the first event “NETWORKS goes to school” was organised by Marta Maggioni
(Leiden University) and Nicos Starreveld (University of Amsterdam), by an initiative of Bart
Groeneveld (University of Amsterdam). This book collects the material prepared for that
event.

The book is intended for both secondary school students and teachers. It can be used

both for self study and as a textbook for preparing lectures on networks. Chapter 1 is

an introduction to the mathematics behind networks. It is a short course into networks
theory, with several examples and exercises to practise the material. Chapter 2 presents
three research articles on networks which can be read independently of each other; it is an
introduction to some applications of networks theory. Chapter 3 exhibits some of the topics
studied within NETWORKS; each section is based on a talk given at the “NETWORKS goes
to school” event. Chapters 2 and 3 can be read independently of each other. The required
background is given in Chapter 1.

The book has been written with the help of Khadija Lachhab.

The NETWORKS programme has an online platform that can be found at www.networkpages.
nl, with various articles on networks. The Networks Pages aims to provide content suitable
for people with all kinds of backgrounds and educational levels/experiences.
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CHAPTER 1

In this chapter we provide some background knowledge on the
mathematical theory of graphs and networks. In Section 1.1 we
formally define a graph, and discuss some basic concepts on graph
theory, together with some examples. In Section 1.2 some basic
structural properties of graphs are introduced and applied to real-
world networks. Section 1.3 contains an overview of the material that
will be needed in the sequel, such as trigonometric functions, complex
numbers and probability distributions.
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1.1. Graph theory

An intuitive definition of a network would be a ‘collection of objects that are interconnected
in some way’. For example a collection of people, who can be interconnected by friend-
ships; or a collection of scientists, who can be interconnected by collaborations. To make
this notion precise, we turn to graph theory.

DEFINITION 1.1.1. A graphis a pair G = (V, E), where
« Vis the set of nodes or vertices;
« FEis the set of edges or branches, connecting the nodes.

Typically, we number the nodes from {1, 2, 3,...}. We denote an edge between two nodes i
and j by {7, j}. To define a graph, we can write down the sets V and E.

EXAMPLE 1.1.1. Consider

V={1,2,3,4,5,6}, E={{1,2},{1,5},{2,3},{2,5},{3,4},{4,5},{4,6}}.
Then G = (V, E) is a graph with six nodes and seven edges.

Sometimes it is useful to have a graphical representation of a graph. Typically we do this by
drawing nodes as a circle with a label in it, and edges as a line between nodes. However,
you are free to choose any representation you may like! In fact, the location of the nodes is
also arbitrary, it only matters the way in which the edges connect the nodes together.

EXAMPLE 1.1.1 (Continued). In Figure 1.1.1 we see two ways in which the graph G can be
drawn.

: (O—®

Figure 1.1.1. Two different representations of the graph in Example 1.1.1.

The degree of a node is a property that can quantify how ‘important’ the node is in the
graph.
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DEFINITION 1.1.2. The degree of a node is the number of edges that are connected to the
node.

EXAMPLE 1.1.1 (Continued). The degrees of all nodes can be easily calculated, for example
by using Figure 1.1.1. The degrees are shown in Table 1.1.1.

NOde‘123456
Degree |2 3 2 3 3 1

Table 1.1.1. Degree of the nodes of the graph in Example 1.1.1.

Two special types of graphs are trees and bipartite graphs. To define a tree, we first have
to define a cycle.

DEFINITION 1.1.3. Acycle C'is a path over the edges in a graph, starting and ending in the
same node. We denote cycles by the sequence of nodes travelled, i.e., C' = {v1, v2, ..., v, v1}
starts and ends in node v; and travels over nodes va, . .., vk.

EXAMPLE 1.1.1 (Continued). The graph contains multiple cycles, for example
C =1{2,3,4,5,2}.
DEFINITION 1.1.4. Atreeis a graph without cycles.

EXAMPLE 1.1.2. Since the graph in Example 1.1.1 contains a cycle, it is not a tree. An ex-
ample of a tree is given in Figure 1.1.2.

Figure 1.1.2. An example of a tree, a graph without any cycles.
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DEFINITION 1.1.5. A bipartite graph is a graph in which the nodes can be divided into two
sets V1 and V4, such that every edge connects a node in V; to a node in V,. There are thus
no edges between two nodes from Vi, or between two nodes from V5.

We usually draw the bipartite graph by putting the nodes from V; on one side, and the nodes
from V4 on the other side.

EXAMPLE 1.1.3. Consider the bipartite graph in Figure 1.1.3. Then

Vi ={1,2,3}, Vo={4,5}.

Figure 1.1.3. An example of a bipartite graph.

To represent a graph, we could also write down an adjacency matrix (see Section 1.3). In
the adjacency matrix, we keep track of which connections are in the graph. If there is an
edge between two nodes, the corresponding element in the matrix is 1. If there is no edge
between two nodes, the corresponding element is 0.

DEFINITION 1.1.6. Let G be a graph with m nodes. The adjacency matrix A of G is an
m X m-matrix with elements

1, {i,7}isanedge,

A’LJ:{ {l]} g 1<i,j<m.

0, {4,j}is notan edge,

EXAMPLE 1.1.4. Consider the graph in Figure 1.1.1. Then its adjacency matrix is

0100 10
1010 10
A_ 010100
0010 11
1 1010 0
0 0 0 1 0 0
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The degree of each node can be easily calculated using the adjacency matrix. Do you see
how?

We can also look at the adjacency matrix in a different way, as the matrix of the number

of paths of length 1 between nodes. Indeed, if there is an edge between two nodes, this

is a path of length 1 between the nodes and the element in the matrix is equal to 1. But
how do we know how many paths exist of length 2, or length 10? By multiplying adjacency
matrices! More formally, to generate the matrix of paths of length &, denoted by A*, we
multiply the matrix of paths of length & — 1 with the adjacency matrix.

EXAMPLE 1.1.4 (Continued). Consider again the graph in Figure 1.1.1. Then

21 1 1 1 0 2 4 2 2 41
130210 42 5 1 6 2
Wogoao |V 02020 2505 10
1 20300 2 1 50 6 3
1120 3 1 46 16 2 0
00 1 0 1 1] 10 2 0 2 1]

For example, there are 2 paths of length 2 from node 1 to itself. Namely, the first path is
traveling from node 1 to node 5 and back, the second path is traveling from node 1 to node
2 and back. In the same way, we see that there are 6 paths of length 3 from node 5 to node
2. Can you find them all?

Though not explicitly mentioned, so far we have considered undirected graphs. Undirected
refers to the fact that an edge between two nodes can be traversed in both directions. We
may also consider directed graphs, where we may only travel along edges in one direction.
We then have directed edges, or arcs.

DEFINITION 1.1.7. Adirected graph is a pair G = (V, A), where
« Vis the set of nodes or vertices;
« Ais the set of directed edges or arcs, connecting the nodes. Each directed edge can
only be traversed in one direction.

We now denote a directed edge between two vertices i and j by (i, j). Note that (4, 4) does
not have to exist! We typically draw directed edges as arrows, indicating the direction in
which we can travel.

EXAMPLE 1.1.5. Consider
V={1,2,3,4}, A={(1,2),(2,3),(3,1),(4 1}

Then G = (V, A) is a directed graph with four vertices and four edges. A representation of
the graph is given in Figure 1.1.4. Note that we can travel from node 1 to node 2 in one step,
but we need two steps to travel from node 2 to node 1.



12 NETWORKS GOES T0 SCHOOL

(&) - ©,
Figure 1.1.4. A representation of the graph in Example 1.1.5.

As we now have incoming and outgoing edges, we must slightly modify our notion of the
degree of a node.

DEFINITION 1.1.8. The indegree of a node is the number of edges that enter the node.
The outdegree of a node is the number of edges that leave the node.

EXAMPLE 1.1.5 (Continued). Using Figure 1.1.5, the indegrees and outdegrees of all nodes
are easily determined and shown in Table 1.1.2.

Node 1 2 3 4
Indegree 2 1 1 0
Outdegree 1 1 1 1

Table 1.1.2. Indegree and outdegree of the nodes of the graph in Example 1.1.5.

DEFINITION 1.1.9. Let G be a directed graph with m nodes. The adjacency matrix A of G
is am x m-matrix with elements

A — 1, (i,7)is adirected edge,
N 0, (i,7)is not adirected edge,
Though this definition may seem equal to that of an undirected graph, the difference is evid-
ent in the resulting adjacency matrix. In an undirected graph, an edge travels in both dir-
ections. This means that the adjacency matrix of an undirected graph is symmetric, i.e., the
element on row 7 and column j is equal to the element on row j and column 4. In a directed
graph, an edge only travels one way so the resulting matrix is not (necessarily) symmetric.

EXAMPLE 1.1.6. Consider the directed graph in Figure 1.1.4. Then its adjacency matrix is
given by

—_ = O O
O O O =
S O = O
o O O O



NETWORKS GOES TO SCHOOL

13

Note that this matrix is not symmetric, compare this with the adjacency matrix in Example
1.1.4.

As in the undirected case, we can determine paths of length k& by multiplying the matrix of
paths of length £ — 1 with the adjacency matrix. The only difference is that we now obtain
the number of directed paths, which again can be travelled in only one direction.

EXAMPLE 1.1.6 (Continued). Consider again the directed graph in Figure 1.1.4. Then

00 1 0 1 000
1 000 f 01 0 0
A=A A= , AP=A% A=
01 0 0 00 1 0
01 0 0 00 10

Then for example, we can travel from node 1 to node 3 in two steps. We can also travel
from node 4 to node 3 in three steps.

1.2. Networks

When we consider real-world networks, we usually talk about ‘complex’ networks. Com-
plexity here means that, in general, real-world networks consist of a very large amount of
nodes and edges, which are highly interconnected. Some examples of real-world networks
are:

- acquaintance networks: in 1967, the psychologist Stanley Milgram performed an
experiment in which he sent 60 letters to various people. They were asked to forward
the letter to a specific person. The catch was that they could only pass the letter to
one of their personal acquaintances, who then also had to pass it on to one of their
acquaintances. At that time, only roughly 5% of the letters reached their destina-
tion. However, in later experiments, the success rate was increased to 35%, and even
to 95% by using a high value package instead of a letter, or by providing more clues
about the recipient. The main conclusion drawn was that most people are connec-
ted by a path of length at most 6. This number 6 occurs in other networks as well, for
example in Six Degrees of Kevin Bacon.

- social networks: an example of a large and complex social network is the network
of Facebook friendships. Each node is a Facebook user, and an edge connects two
nodes if the corresponding users are friends on Facebook. Note that this is an un-
directed network, as Facebook friendships ‘travel’ in both directions. An example of
a directed social network is the Twitter network. If we consider nodes to be Twitter
users, then a directed edge from node i to node j would indicate that user  follows
user j on Twitter. Since you do no automatically follow back, each edge can be trav-
elled only in one direction.
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« transportation networks: networks that represent roads, railway lines, or other
forms of transportation quickly become increasingly complex. Consider for instance
the Dutch railway network of NS, on which the main problems are efficiently determ-
ining the train time schedule and the allocation of material. We will study this in detail
in Chapter 2, Section 2.3.

As networks are usually large and complex, it is difficult to obtain a global description of
their structure. The examples of graphs we encountered in Section 1.1 were small and eas-
ily drawn for instance. Try this for a network with a billion nodes, and nobody will be happy
with the result. In such complex networks it is important to develop methods that can tell
us something about the structure of a network. In this booklet we will consider small-world,
scale-free, modularity and treewidth. Research has shown that many real-world networks
share the first two properties.

1.2.1. Small-world

The small-world phenomenon roughly states that distances in real-world networks are
quite small. Consider for example the acquaintance network, in which it seemed that most
people were connected by a path of length at most 6. Networks that have the small-world
property are highly connected. This means that if we consider the largest component in the
graph that is connected (so there exists a path between each pair of nodes in the compon-
ent), then a large proportion of all nodes in the graph will be in that component. Many net-
works even consist of one connected component, for example the Internet.

Do you find it surprising that in many real-world networks, such as social networks, the
path between two nodes is so short? It could be, as a social network often contains a lot

of closed triads. In short, this means that since the friends of your friends are often also
your friends, we encounter a lot of short circuits in the graph. But how is it then possible to
reach all other people within just a few steps?

A mathematical model that exhibits both many closed triads and very short paths is the
Watts-Strogatz model. The main idea is that everyone lives on an n x n-grid, this grid may
symbolize geographic proximity. For some constant value of r, assume that every node
knows all other nodes within r grid steps. These are people you know because you live
close to them (your neighbours, your classmates). For some other constant value k, assume
that every node knows k other nodes uniformly at random across the grid. These are people
you know who live far away, for a reason that has nothing to do with geographical proximity
(your distant relatives, your friends you met on holiday).

Using the connections thus made, we can construct a random graph, i.e., a graph in which
edges are generated according to some probability distribution. It is clear that this network
has many closed triads, since most of your friends are close to you on the grid. Then they
are also close to each other, and thus know one another according to the assumption. How-
ever, adding the k random connections helps us in establishing short paths to other nodes.
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Since these k nodes are chosen at random, it is likely that they have very little overlap with
your other friends. Travelling via a node k then gives you access to a whole other part of the
grid. An example of the Watts-Strogatz model forn = 4, = 1 and k = 1 is given in Figure
1.2.1. For a detailed exploration of the small-world phenomenon, see [4, Chapter 20].

() ()
/ A S S
) () ()
“ A A\ A\
) ) e e
/ / N\ S
C/ s ) e
o/ N\

Figure 1.2.1. An example of the Watts-Strogatz model, withn = 4, r = 1 and k = 1. The red
edges denote the connections made uniformly across the grid.

1.2.2. Scale-free
The scale-free phenomenon roughly states that the degrees in real-world networks show a
lot of variability. Most nodes have just a few connections, but there are some nodes with a
huge amount of connections. These popular nodes are called hubs and will be connected to
most parts of the network.
In a scale-free network, the distribution of the degree of the nodes follows a power law.
This means that, for some constant ¢ and some exponent + > 0, the number of nodes of
degree k is proportional to

f(k)=ck™".

Hence the larger k is, the fewer nodes we encounter with degree k. An example of a power
law is given in Figure 1.2.2. Note the difference with the bell curve of the normal distri-
bution, as in Figure 1.3.8 of the next section. In the bell curve, most nodes have a degree
around the average with very few outliers. In the power law, most nodes have a very small
degree but there are some nodes with very large degree.
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f(x)
0 T
Figure 1.2.2. Partial plot of the power law f(z) = %x*%

How do we explain that many real-world networks exhibit the same scale-free behaviour?

A possible explanation may be found by considering a mathematical graph model using

the preferential attachment mechanism. The basic idea of such a model is as follows. We
start with one node and at each point in time, we add another node to the network. The new
node will choose an already existing node with which to connect, with probability propor-
tional to the degree of the existing node.

There are two important things to note about this model. First, it is a growing network model.
Compare this for instance with the Watss-Strogatz model, where we start with all nodes
given and we determine which edges will connect them. In the preferential attachment
model, we do not start with all the nodes given. Rather, we add nodes and their edges one
at a time. Second, since the connecting probabilities depend on the degree of the existing
node, nodes with a high degree in the network are more likely to gain new connections. This
effect will eventually produce a few hubs in the network, with very large degree.

If we continue in this way, the distribution of the degree of the nodes will eventually follow a
power law distribution. Is the preferential attachment model a good representation of real-
world networks? One important thing to note is that the growing nature of the network is
representative for most real-world networks. Consider for example the Hollywood network,
where nodes are actors and edges are films that actors have collaborated on. As there are
always more people getting into acting, the network is constantly growing. Another thing is
that ‘popular’ nodes often are more likely to gain new connections. In the Hollywood net-
work, new actors are more likely to work together with well-established actors, if not simply
for the fact that they are in a large amount of movies.
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How do the connections in the network change when certain nodes are removed? This is
the main question behind the concept of robustness. The robustness of a network is the
ability of the network to withstand failures and attacks, hence it measures the stability

of a network. One way of measuring robustness is by considering the shortest paths, and
whether or not the shortest paths change when we remove nodes. We can either remove
nodes at random (which could happen due to random failures) or target specific nodes
(which could happen in targeted attacks). Networks that are scale-free turn out to be quite
resistant to removal of random nodes, as these are usually nodes with a low degree. How-
ever, the removal of a few key hubs could mean that a great many of the connections in the
network fail. The shortest paths then also change significantly, as these usually travel via
a key hub. Of course to do this, one must still determine which nodes are key hubs. For a
detailed exploration of the notion of scale-free, see [2].

1.2.3. Modularity

Modularity is a measure of the structure of a network. It indicates whether there exist com-
munities or groups in a network. The main idea behind it is that we compare the given net-
work to a network with the same weighted degrees, but in which all edges are rewired at
random. If there are more connections between sets of nodes in the original network than
in the random network, this indicates some community structure.

Let G be a graph with m edges, where the number of edges between ¢ and j is w;;. We cut
each edge into two halves which we call stubs, and each stub is randomly matched with
another stub. We consider the quantity

1 « kik;
g 2 (%) 2D

We divide the nodes into a total of I sets, which we call C1, ..., C;. These represent the
(suspected) communities. Per set Cy, we then consider all vertices that are in the set. In
the original network, the number of edges between i and j is w;;. Let k; be the degree of
node :. Since the rewired network is random, we cannot speak about the absolute number
of edges between i and ;. Instead, we consider the expected number of edges between ¢
and j which is equal to

kik;

2m
We thus see that if the difference between w;; and this expected number is positive, then
the connection in the original network is stronger than in the random network. To actu-
ally identify the communities in a network, we maximize Q over all possible sets Cx. The
higher this number is, the stronger the communities are, i.e., the more connections they
have within their community.
But where does the expected number of edges come from? To see this, consider the bino-
mial distribution and the corresponding expected value (see Section 1.3). Let X;; be the
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number of edges between i and j in the rewired network. Define success as the existence
of an edge between i and j. Then X;; has a binomial distribution with parameters:

« probability of success: -;

= number of trials: k;k;.
The probability of success is the probability of connecting a stub of i to a stub of 5. Since the
stubs are randomly chosen, and there are a total of 2m stubs, the probability of choosing
one particular stub is 1/(2m). The number of trials is the amount of opportunities we have
to connect stubs from i to stubs from j. As the degree of node i is k;, node i has k; stubs.
Similarly, node j has k; stubs. The amount of opportunities are then the number of combin-
ations of a stub from ¢ and a stub from j, so a total of k;k;.
To determine the expected number of edges between i and j in the rewired network, we
have to determine the expected value of X;;. Since X;; has a binomial distribution, it fol-

lows immediately that
kik;
E[X,;] = 222,
[Xiy] = 52
1.2.4. Treewidth
In general, we consider tree graphs as ‘simple’ graphs. But how do we measure how simple
a non-tree graph is? We do this by considering how tree-like a graph is, by using a concept

called the treewidth. First we have to define a tree decomposition of a graph.

DEFINITION 1.2.1. A tree decomposition of a graph G = (V, E) is a pair (T, X ), where
X = {X: : t € V(T)}isafamily of subsets of V and T'is a tree whose nodes are the
subsets X;, such that
- forall edges {u,v} € E of the graph G, there exists a node ¢ of the tree such that
u,v € Xy;
« for each pair y, z of nodes of T, if w is any node on the path between y and z then
X, NX, C Xy.

This is quite a technical definition, so lets unpack step by step what is meant by a tree de-
composition. Using the graph G, we will construct a tree T'. Each node ¢ of T is associated
with a set X;. This set contains nodes from G, in such a way that
- for every edge {u,v} in G, there must be a set X, in which both « and v are con-
tained;
- if X, and X both contain the node w, then for all nodes on the path between y and z,
their respective sets X should contain w as well.
To make the concept more clear, we will look at an example.

EXAMPLE 1.2.1. Consider the graph in Figure 1.2.3. Several tree decompositions are shown
in Figure 1.2.4. The left figure is a trivial decomposition and can be done for any graph. The

other figures are two other decompositions for this graph. Can you check if the two require-

ments are true for these figures?
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Figure 1.2.3. A graph without tree structure.

1,2 1,2 2,3,4

1,2,3,4,567| [3,560234,64,67| |35634,64,6]7]

Figure 1.2.4. Three different tree decompositions of the graph in Figure 1.2.3.

We thus see that a tree decomposition is not unique, in fact, the trivial decomposition is
valid for any graph. Then how will we use this notion to say something about how tree-like
the original graph is, if we have multiple decompositions to choose from?

DEFINITION 1.2.2. The width of a tree decomposition is
max{|X:| —1:t e V(t)},

i.e, the size of its largest set X; minus one. The treewidth of a graph G is the minimum
width of a tree decomposition of G, among all possible tree decompositions of G. We de-
note the treewidth of G by tw(G).

EXAMPLE 1.2.1 (Continued). Consider the decompositions in Figure 1.2.4. Then its widths
are 6, 3 and 2, respectively. For the treewidth tw(G) we have to consider the minimum
width among all possible tree decompositions, so it is possible to find a decomposition with
width 1?
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Finding the treewidth of a given graph has been proven to be equivalent to the game of ‘Po-
licemen catching robbers on a graph’. We present an assignment derived from a present-
ation Bart Jansen gave in 2017, called Micro-course on Structural Graph Parameters, part 1:
Treewidth [5].

Consider the following setup: a robber moves between nodes of a graph. The police chases
him by using helicopters and tries to catch him by landing on a node. A police officer can
catch the robber only if he lands on the node the robber is located. The robber moves to

a neighbouring node, whenever there is no police officer there and he sees the helicopter
coming to land on the node he is on. It can be shown that a graph G has treewidth at most
k — 1if and only if k cops are sufficient to catch any robber on G.

Let’s play this game on some specific graphs. Consider a tree, as in Figure 1.2.5. We see
that robbers cannot hide on trees and two police officers are enough to catch any robber on
such a graph.

Figure 1.2.5. A robber moving on a tree.

EXERCISE 1. Consider the graphs given in Figure 1.2.6. How many police officers are
needed in order to catch a robber moving on each one of these graphs?

We can also consider a real-world ‘policemen catching robbers on a graph’-game. In the
local police station in Leiden, two emergencies occur. There are two robberies, one in a jew-
ellery store on the Middelweg and one in a small bank on the Uiterstegracht. The police
station has to coordinate the police officers patrolling in the city, and send additional units
to key points so that the robbers will not escape. Thankfully they have a group of mathem-
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Figure 1.2.6. How may police officers are needed to catch a robber moving on these graphs?

aticians who can come up with a good strategy to catch the robbers. First, we take the map
of Leiden and mark the locations of the robberies, see Figure 1.2.7.

We need to mathematically analyse this situation. We take the map of the centre of Leiden
and we make a grid of all streets and the crossroads, see Figure 1.2.8. If we now erase the
city map, in Figure 1.2.9 we obtain a graph which we can analyse using treewidth.

In these two maps, the green nodes denote bridges and the red nodes denote crossroads.
We see that the bridges connect different parts of the city. Since both robberies occurred
in the internal ring, we need to secure the bridges so that the robbers will not escape to
the outer ring. Therefore we need to devise a police-robbers catching strategy only on the
inner ring, and not on the whole city. The inner ring is a graph with 43 vertices, which we
number. In Figure 1.2.10, the graph of the inner ring is depicted, as well as the locations of
the robbers and the patrolling police officers.

There are currently five police officers patrolling in the centre, on nodes 5, 10, 18, 25 and
32. Additionally to them, we need to dispatch more units so that we can catch the robbers.



22 NETWORKS GOES TO SCHOOL

.;Dﬁh\asira:\r
o

= @ =1 Ut o
SR = & Singar res
S - et ars
% BUOF 5 (e Vag) o Marect iy
2 2 4 = Nogrder!
S 8 8 3 i
= - 4’_-" p ' =
i 0 ]
0 gy U_L\g_ﬂ:‘\,-._
= fet 5
- Wase™ @ 7;
E 0y T &)
¥ Albert Heijn ) L
- |
Weeshuis
(&) L
o = o
& 3
S 8 g S|
A B=. ok =
S TR g
£ 5 5 = Pt
I(erk@ & §L," : &
. g 3 =
3 g 5
= 5 §
7
“AsintAnna Huﬁe@ §

Figure 1.2.7. A map of the centre of Leiden Figure 1.2.8. An artificial network overlapped
and the location of the two robberies. on the map of the centre of Leiden.

3 i 2
L 'IF i
mmmmﬂ:; ""“\.— flo,—'”k—o ‘ E0penStieethiap . i
Figure 1.2.9. An artificial network of the Figure 1.2.10. The graph of the inner ring,
with the locations of the robbers and the

centre of Leiden, which we can analyse.
patrolling police officers.
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EXERCISE 2. Consider the graph in Figure 1.2.10.

(@) Are these five police officers capable of catching the two robbers? (Remember that
a robber is caught if he is on a node, all the neighbouring nodes to that node are se-
cured by policemen and there is a police officer free to move to the node where the
robber is located.)

(b) Can we surely catch one of the two robbers? (If all five policemen focus on one rob-
ber?)

(c) How many additional officers do you need in order to catch the two robbers?

(d) How would you allocate the patrolling officers until the additional officers arrive?

1.3. Special functions

1.3.1. Indicator function

The indicator function of a subset A of a set X, denoted by 1 4, is a function from X to
{0, 1}. It returns the value 1 for all elements of X that are in A, and the value O for all ele-
ments of X not in A.

DEFINITION 1.3.1. The indicator function of a subset A of X is a function
1a:X — {0,1} defined as
1, zisin A
Ta(z) = , ,
0, zisnotin A.

EXAMPLE 1.3.1. Consider aset X and a subset A C X, see Figure 1.3.1. Then we have

Figure 1.3.1. A set X with subset A C X.



24 NETWORKS GOES TO SCHOOL

1.3.2. Exponential functions and exponential growth
DEFINITION 1.3.2. An exponential function is a function of the form

y(.l’) =a- b$7
for fixed constants a # 0 and b > 0.

Exponential functions are characterized by the fact that the growth rate of the function is
directly proportional to the value of the function. As it is then possible to have a very rapid
growth rate, exponential functions can start from a low value and explode over time.

Any situation of exponential growth can be modelled as a relationship between a variable z
growing at a rate r > 1 to the power of ¢, with xo the value at time zero:

x(t) = o - 1"
EXAMPLE 1.3.2. In Figure 1.3.2, we show three examples of an exponential function with
o = landr = g, r = % and r = 3. The larger r is, the faster the function increases. What
do you think would happenif0 < r < 1?

x(t)
[/
/
/
A
e

Figure 1.3.2. Partial plot of the exponential functions z(t) = (g)t in green, z(t) = (g)t in red
and z(t) = 3" in blue.

In real life, we see plenty examples of exponential growth in time.
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(1) Australia’s rabbit infestation
In 1859, an English farmer named Thomas Austin brought 24 rabbits with him to his
new home in Australia, and set them free on his land. Within six years, the total num-
ber of rabbits in Australia was 22 million.

(2) Nuclear bomb
In 1945, a group of physicist split an atom in the New Mexico desert. When they did,
2 new atoms split. After that, 4 atoms did, then 8, 16, 32 and so on, eventually pro-
ducing the largest explosion then recorded.

(3) Facebook
In 2004, the social network Facebook was invented at Harvard. It was so popular
that everyone who joined invited several of their friends, who then invited several of
their friends. Now there are more than a billion people using it.

1.3.3. Trigonometric functions

Trigonometric functions are functions of an angle, that relate the angles of a triangle to the
length of its sides. The most well-known trigonometric functions are the sine, cosine and
tangent, denoted by sin z, cos x and tan x. We have that

sinx
tanx = .
Cosx

A function f is called periodic if for some non-zero constant P, we have that f(z) = f(z +
P) for all values of z. Then P is called the period of the function. A periodic function thus
repeats its values after each period.

A plot of the sine and cosine function is given in Figure 1.3.3 and a plot of the tangent func-
tion is given in Figure 1.3.4. As is clear from the figures, these functions are periodic. The
sine and cosine function have a period of 27, while the tangent function has a period of .
Since cosxz = Oforaz = mn — 7, where n is any integer, we find that tan = has a vertical
asymptote at these values, i.e., the function becomes arbitrarily large when z is close to the
value. Furthermore, the functions have some symmetric properties:

sin(—x) = —sinz, cos(—z)=cosz, tan(—z)= —tanz.

Since the trigonometric functions are periodic, strictly speaking there does not exist a true
inverse function. For example, sin(0) = 0 = sin(w), so we do not find a unique element
when we consider the inverse of 0. We can however define the inverse functions by restrict-
ing the domain. These are the functions arcsin z, arccos « and arctan x.

1.3.4. Polar forms of complex numbers and Euler’s formula
DEFINITION 1.3.3. A complex number is a number of the form a + ib, where a and b are
real numbers and 7 satisfies i> = —1. i is called the imaginary number. If z = o + ib, then
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Figure 1.3.3. Partial plot of the trigonometric functions f(x) = sinx in red and f(x) = cosz in
blue.

the real part of z is a, while the imaginary part of z is b. Two complex numbers are equal if
their real parts are equal, and their imaginary parts are equal.

We can represent the complex number z = a + ib in the two-dimensional plane. If we use
Cartesian coordinates, we let the z-axis be real, the y-axis be imaginary and we view z as
the point (a, b). The coordinates a and b then refer to how far the point lies along the z-axis
and the y-axis, respectively.
We can also describe z by using polar coordinates. In this coordinate system, z is the point
(r,0), where

- ris the radius, the length of the ray connecting the origin to the point;

« 0 is the angle between this ray and the positive z-axis.
In Figure 1.3.5, both coordinate systems are drawn in the two-dimensional plane. We can
thus describe the same point z with either the Cartesian coordinates (a, b) or the polar co-
ordinates (r, #). To switch between the two systems, some handy formulas exist which have
been given in Table 1.3.1.

Cartesian coordinates Polar coordinates

(a,b) (Va2 + b2,atan2(b, a))
(rcos@,rsind) (r,0)

Table 1.3.1. Relation between Cartesian coordinates and polar coordinates.

In Table 1.3.1, atan2(b, a) refers to a generalisation of the inverse tangent function. It is
given by

arctan (%), ifa >0,
atan2(b,a) = { arctan () + 7, ifa<0,b>0,
arctan (2) —, ifa<0,b<0.
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Figure 1.3.4. Partial plot of the trigonometric function f(x) = tanx. The vertical asymptotes
are denoted with dotted lines.
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This distinction is necessary since z = a — iband z = —a + b are two complex numbers
with different angles. However, for both we have that the quotient of the imaginary part over
the real one gives the same result. If we would only consider the arctan function, this would
produce the same angle. A plot of the arctan function is given in Figure 1.3.6.

An interesting relation occurs when we consider the complex exponential. Let e be Euler’s
number. Then Euler’s formula states that for a real number z

e = cosx + isin .

In Figure 1.3.7, we see this formula represented in a picture. In Chapter 3, Section 3.4
we present some exercises with Euler’s formula. It is possible to derive the formula using
Taylor series, which is a representation of a function as a series of power terms. A rough
sketch of the proof is as follows.

We know that the exponential function has the following Taylor series:

c_q 22 23
e = —+ fl}'g —+ ? + ...,
Then we substitute iz for x, and use the fact that i> = —1 to obtain

o . (23:)2 (zx)?’
e f1+z:c—|—72! —|—73!
iz . 2 'L’flfs
T T

+ ...
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Figure 1.3.5. The complex number z = a + b, using Cartesian and polar coordinates.

We then separate the real and the imaginary parts, and obtain

i _ (4 22 xt . z® b
e’ = _EJFEJF"‘ +1 w—i—&-a—&—... .

As it turns out, these are exactly the Taylor series for cos = and sin z, respectively. We thus
obtain Euler’s formula

e = cosz +isin .

1.3.5. Binomial distribution

The binomial distribution is a probability distribution on the number of successes in a
series of experiments. We make the following assumptions:

« the number m of observations is fixed;

« each observation is independent of the other observations;

« each observation represents one of two outcomes: success or failure;

« the probability p of success is exactly the same for each trial.
Under these assumptions, we can describe each binomial distribution by using the para-
meters m and p. Summarizing, we perform an experiment m times. The outcome of each
experiment is either success or failure, where success occurs with probability p. Each out-
come is independent from all other outcomes.
A random variable X is a variable whose possible values are outcomes of a random pro-
cess. We define a random variable by giving the state space, the set of all possible values,
and by giving the probability distribution, the random process that dictates its outcomes.
Let X be a random variable that follows the binomial distribution with parameters m and p.
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Figure 1.3.6. Partial plot of the function f(x) = arctan(z).

Then X has state space {0, 1,...,m}, and the probability that X is equal to k is given by

P(X = k) = <’Z)p’“<1 —p)"

m m!
<k> ~ Kl(m— k)

is the binomial coefficient. The symbol (’2) is read as ‘m choose k’, as this is the num-
ber of ways to choose & different elements from a total of m elements, where the order of
elements does not matter. The factorial of m is denoted by m! and equal to the product
m-(m—1)-(m—2)-...1.

Consider the following example. Suppose that we have a total of 5 colours, and we wish
to know how many combinations there are of 3 different colours, where the order of the
colours does not matter. Then m = 5 and k = 3, and

5 5!
= =10.
() -

We could also reason in a different way. For the first choice we have a total of 5 possible
colours, for the second choice we have 4 possible colours and for the third choice we have 3
possible colours. The total of combinations of three colours is then 5-4 -3 = 5!/2!. However,
the order of colours does not matter, so we still have to divide by the number of ways in
which we can order 3 colours, whichis3-2-1 = 3!

where
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0 coszx

Figure 1.3.7. Graphical representation of Euler's formula.

EXAMPLE 1.3.3. Consider a coin toss, where possible outcomes are heads or tails. Sup-
pose that we have a fair coin, i.e., the probability for heads is the same as it is for tails. If we
toss the coin 10 times, then the number of heads has a binomial distribution with paramet-
ersm=10and p = é The probability of getting four heads is equal to

10\ 14 1N\ 105
IP’(X_4)_<4>2 (1—§> = =75 ~ 0.205.

1.3.6. Normal distribution

The normal distribution or Gaussian distribution is a probability distribution that is used

in many fields of science. The parameters for the normal distribution are the mean p and
the standard deviation o. Here, p quantifies the expected value of the data and o quantifies
how much variation there is in the data.

The binomial distribution is a discrete probability distribution. The notion discrete here
refers to the fact that the state space is countable, i.e., each element of the set can be listed
one at a time. Examples of a countable set are {—1,5,10,2,80} or {0,1,2,...}. The normal
distribution is a continuous probability distribution, where continuous refers to the fact that
the state space is uncountable. Contrary to countable sets, it is not possible to list each ele-
ment of an uncountable set one at a time. An example of such a set is the set of real num-
bers.

If X is a random variable with a discrete or continuous distribution, we call X a discrete

or continuous random variable, respectively. For a discrete random variable, we can write
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down the probability that it equals a specific value. For a continuous random variable, this
is not possible, as there are an uncountable number of possible values. We can however
specify the probability that a continuous random variable falls in a range of values by using
the density function. The probability that a continuous random variable X assumes a value
in [a, b] is given by the integral of the density function over that interval. This corresponds
to the area delimited by the graph of the density function, the z-axis and the vertical lines
y=aandy =0.

The density function of the normal distribution is shaped like a ‘bell curve’: symmetric
around its mean and decreases on both sides of the curve. An example can be seen in Fig-
ure 1.3.8.

f(z)

Figure 1.3.8. Example of the density of the normal distribution, for 4y = 0 and o = 1. This is
also called the standard normal distribution. The probability that X assumes a value in [a, b] is
equal to the area delimited by the density function, the x-axis and the vertical lines y = a and
y=b.

Intuitively, the normal distribution will occur when most observations are around the aver-
age, and there are few outliers. Because of this, we encounter many examples of the nor-
mal distribution in real life, for example:

« heights of people: most people are around average height, with few very tall or very
short people;

- size of products made by a machine: if a product is made in a factory, the machine
is set to produce the product to be a certain size. Though there may be some error,
usually it is not far from the average;

- errors in measurements: think for example of measuring a length with a ruler, then
usually your mistake would be small, not large.
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1.3.7. Average value
DEFINITION 1.3.4. The arithmetic mean or average value of the numbers a1, ..., a., is

1 m
A=— i
2
=1
We average the total value over the total amount of numbers.

EXAMPLE 1.3.4. Considerthe numbersa; = 1,a2 = 8,a3 = —4andas = 5. Then the

average value is equal to
5

1
A= (1+8-445)=.

1.3.8. Expected value

Suppose that we have a random variable X, that can assume the values z1, z2, . .. with cor-
responding probabilities p1, ps, . ... If we draw X a couple of times, we obtain values z;,
over which we can compute the average value. But what if we would repeat drawing X for
a long time, even indefinitely? Then as the number of experiments grows, the average value
will grow closer and closer to the expected value of X, denoted by E[X].

DEFINITION 1.3.5. The expected value of a random variable X that can assume the val-
ues x1, w2, ... with corresponding probabilities p1, p2, . . . is defined as

E[X} = Z TiPi-

i>1
In other words, it is the probability weighted average of all possible values.

EXAMPLE 1.3.5. Let X be the outcome of a six-sided die, with equal probabilities for each
outcome. Then X can assume the values

T :1,132:2,1'3:3,]}4:4,115:5,236:6

with probability p; = ¢ each. Then the expected value is equal to

ZG 1 ZG 7
E[X}: a;‘ipiZE 3;‘1':5.
i=1 i=1

So if we would roll a die a large amount of times, the average would be close to % (You can
try for yourself if it works, by throwing a die several times and calculating the average.)

EXAMPLE 1.3.6. Let X have a hinomial distribution with parameters m and p. Then the
expected value of X is
E[X] = mp.
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1.3.9. Matrices

DEFINITION 1.3.6. A matrix is a table of numbers, symbols or expressions, arranged in
rows and columns. If the matrix M has m rows and n columns, we say that M isam x
n-matrix, pronounced as ‘m by n’. We write

M = (mij)1cicma<j<n s

where m;; is the element found on the intersection of row i and column j.
If either m or n is equal to 1, we may also refer to M as a vector.

A matrix is thus entirely defined by its dimensions m and n, and its elements m;;. We usu-
ally write the matrix with brackets surrounding it.

EXAMPLE 1.3.7. Consider

10
1 —
A 0 8 . B= 2
16 -3 4 7
50

Then Ais a2 x 3-matrix and B is a4 x 1-matrix, or a vector of length four.

If the elements of two matrices are numbers, we can define arithmetic operations on them.
The easiest operations are addition, subtraction, scalar multiplication and transposition,
since these can be done per element.

DEFINITION 1.3.7. Let Aand B m x n-matrices. Let ¢ € R be a constant. Then
- the sum of A and B is am x n-matrix with elements

(A+B)ij =Aij + Bij, 1<i<m,1<j<m
« the scalar product cA of cand A is a m x n-matrix with elements
(cA)ij =cAij, 1<i<m,1<j<my
- the transpose A" is a n x m-matrix with elements
(AN)ji=Ay, 1<i<m,1<j<n.

EXAMPLE 1.3.8. Consider

A_|t 0 s  B- 12 3|
16 —3 4 0 —6 7
Then
2 2 11 2 0 16 Lo
A+B= , 2A= , B'=1]2 -6
6 -9 11 32 -6 8 -
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EXERCISE 3. Let Aand B be m x n-matrices and ¢ € R be a constant. Show that the
following properties are true.

(a) (CA)T =cAT;

b) (A+B)T=AT +BT;

(© (ANHT = A.

It becomes a bit more difficult when we consider multiplication of two matrices. Two matrices
can only be multiplied when the number of columns of the first matrix equals the number
of rows of the second matrix. We could also say that their inner dimensions should be the
same.

DEFINITION 1.3.8. Let A be am x n-matrix and B an x p-matrix. Then the product AB of
Aand Bisam x p-matrix with elements

(AB)i; =Y AuB, 1<i<m,1<j<p.
r=1

In the summation, we multiply elements from A and B, where in A we travel along a row
and in B we travel along a column.

EXAMPLE 1.3.9. Consider

) 3 4 0 2000

A= ., B=|1 100
1 0 0

0 10

Then the product of A and B is
B |2 03140 2.2000+3-100+4.10]_{3 4340}

1-04+0-140-0 1-2000+0-100+0-10 [0 2000

We encounter applications of matrices in many scientific fields, for example they can be
used for:
« linear transformation: a linear transformation is a function L : R™ — R™. It can
be defined by writing down an m x m-matrix M. We represent the point (x,y) by a
column vector
4
Yy

For every x € R™, we then have L(z) = Mz so we only need to multiply the matrix and the
vector to obtain the value of the function. An example of a linear transformation is rotation,
in which we rotate a vector in R™ over an angle to obtain a new vector in R™.
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EXAMPLE 1.3.10. Letm = 2 and consider the rotation matrix
M= c95 6 —sind ‘
sinf cos 6

This matrix rotates points in the two-dimensional plane counterclockwise through an angle
6 about the origin. If we rotate the point (z, y) over an angle of 6, we obtain the point

cosf —sinf| |x| |xcosh —ysind
sin@ cosd | |y| |zsind+ycosd|’

In Figure 1.3.9, we see that if we rotate the point (1, 0) over an angle of %, we obtain the

point
cosj —sinf||1| _|cosf| [3V2 .
sinZ  cosZ | [0 sin = V2

Y
(3V2,5V2)
ln
> X
0 (1,0)

Figure 1.3.9. Rotation of (1, 0) counterclockwise through an angle of & about the origin.

- stochastic matrix: a stochastic matrix is a square matrix whose rows are probability
vectors, i.e., all elements are non-negative and the rows sum to 1. Computers run
Markov simulations, based on stochastic matrices, in order to model events ranging
from weather forecasting to quantum mechanics. We will see the stochastic matrix,
used in Markov chains, in Chapter 3, Section 3.2.
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CHAPTER 2

In this chapter we present the following three research articles on
networks:

1. The Marvel universe
2. A network of Thrones
3. The NS and the train schedules

Each section begins with a short abstract where the main ideas of
the article are given, together with references for the mathematical
notions needed.
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2.1. The Marvel universe

The following article is based on the work of Alberich, Miro-Julia and Rosselld, see [1].

The authors construct a bipartite graph, with nodes corresponding to Marvel characters and
comic books. The projection of the graph on its set of nodes-characters leads to a collab-
oration network: nodes represent characters, and edges link characters appearing in the
same comic book. Furthermore, using the distributions of the edges in the original network,

a random bipartite graph is also studied, in which edges are generated at random accord-
ing to those distributions. The projection of this random bipartite graph on its set of nodes-
characters produces a random collaboration network. The paper investigates the differences
between the original and the random network by considering the average degree and cluster-
ing, as well as the small-world and scale-free phenomena.

Relevant concepts are degrees of nodes and bipartite graphs (Section 1.1), small-world and
scale-free phenomena (Section 1.2), and average values (Section 1.3).

ABSTRACT. Inthe Marvel Universe collaboration network, two Marvel characters are con-

sidered linked if they jointly appear in the same Marvel comic book. We show that this net-
work is not a random network, and that it has most, but not all, characteristics of “real-life”
collaboration networks, such as movie actors or scientific collaboration networks.

2.1.1. Motivation

A collaboration network is a network in which nodes represent people and edges, that link
pairs of nodes, denote the existence of some kind of collaboration between them.
A well-known collaboration network is the Movie Actors network, also known as the Holly-
wood network. In it, nodes represent actors and actresses, and a link is added between two
nodes when they have jointly appeared in the same film. Scientific collaboration networks
have also been thoroughly studied in the last years. In such a network, nodes represent sci-
entists and links denote the co-authorship of a scientific piece of work contained in some
database.
All collaboration networks present the same basic features:

(a) on average, every pair of nodes can be connected through a short path within the

network;
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(b) the probability that two nodes are linked is greater if they share a neighbor;
(c) the fraction of nodes with k neighbors decays roughly as a function of the form k=7
for some positive exponent 7.

A network satisfying properties (a) and (b) is called a small world, and if it satisfies (c) then
it is called scale-free. We analyze a new collaboration network, that is artificial, but mimics
real-life networks: the Marvel Universe collaboration network. In it, the nodes correspond
to Marvel Comics characters (Spider-Man, the Fantastic Four, the XMen, Captain America,
etc.) and two nodes are linked when the corresponding characters have jointly appeared
in the same Marvel comic book. The Marvel Universe network captures the social structure
of the Marvel Universe, because most pairs of characters that have jointly appeared in the
same comic book have fought shoulder to shoulder or against each other, or have had some
other strong relationship, like family ties or kidnapping. On the other hand it is a purely ar-
tificial social network, whose nodes correspond to invented entities and whose links have
been raised by a team of writers without any preconception.
Does the Marvel Universe network resemble real-life collaboration networks?

2.1.2. The Marvel Universe network

The Marvel Universe network consists of 6486 characters, appearing in 12942 comic books.

From the data contained in the Marvel Chronology Project (MCP) database, we have built up
a bipartite graph, with nodes corresponding to either Marvel characters or comic books,
and edges from every character to all the books where it has appeared.

The table below summarizes the results obtained:

Number of characters: 6486
Number of books: 12942
Mean books per character: 14.9
Mean characters per book: 7.47

Distribution of characters per book: Py (k) ~ k=312
Distribution of books per character:  P.(k) ~ k~°:6610~"/189

From the above table it turns out that a Marvel character appears typically in about 14.9
comic books (the number of appearances spans from 1 to! 1625). The average number of
characters per comic book is 7.47, with a range spanning from 1 to? 111.

Moreover, P, (k) is the probability that a comic book has & characters appearing in it, and
this distribution is very similar to the one that can be found in real-life networks. On the
other hand, the probability that a character appears in k comic books, given by P.(k), is dif-
ferent from what is normally found in bipartite graphs associated to collaboration networks.

1This greatest value corresponds to Spider-Man.
2This last value is achieved by Issue 1 of Contest of Champions, where the Grandmaster and the
Unknown took every superhero in the planet and selected two teams to battle it out.
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Indeed here the exponent of & is only 0.66, which is much smaller than other values pub-
lished for similar networks, that usually ranges from 2 to 3.

2.1.2.1. The null random model

We compare the results to a null random model. A reasonable random model would seem
to be one with its same set of nodes and whose links have been generated by simply tossing
a coin, so each link exists, independently of the other ones, with a fixed probability. This is a
random network. We start from a random bipartite graph, called a MU-BR graph, with 6486
nodes-characters and 12942 nodes-books, and whose edges have been randomly created
following exactly the same distributions P.(k) and P, (k) of outgoing and ingoing edges ob-
tained in the previous section. Then, a MU-R graph is the projection of this random bipartite
graph on its set of nodes-characters: i.e., its nodes correspond to characters and its links
represent to be connected to the same book in a MU-BR graph. Our Marvel Universe (MU)
graph has N. = 6486 nodes-characters and L. = 168267 links, that is pairs of characters
that have collaborated in some comic book. It is important to note that the actual number
of collaborations is 569770, but this value counts all collaborations, repetitions included.
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The degree of a node is the number of edges incident to the node, with loops counted twice.
In this context, the number of characters that have jointly appeared with a given character
in some comic book corresponds to the degree of this character. An application of the de-
gree sum formula,

deg(nodes;) + deg(nodess) + ... + deg(nodes,,) = 2 x number of total links,

implies that the average value for this degree in the MU collaboration network is

2L,
N

i.e., a Marvel character has collaborated, on average, with 52 other characters. The range of
this number of collaborators runs from 0 to 1933; the number of partners of Captain Amer-

= 51.88,
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ica. Here we find a big difference between the values obtained in the MU network and in its
null random model MU-R. In the MU-R graph we would expect all 569770 collaborations to
form different links, which is about 3.4 times the actual number of links in the MU network.
As a consequence, the average degree in MU-R is the average degree in MU multiplied by
this same factor, and would therefore become 175.69. If the MU collaboration network had
been created in a purely random way, a Marvel character would have collaborated on aver-
age with more than 175 other characters!

It is shown that in the Hollywood graph and in several scientific collaboration networks the
actual average degree is consistently smaller than the theoretical average degree of the
corresponding random model, but not by such a large factor as the one found here. This
indicates that Marvel characters are made to collaborate repeatedly with the same charac-
ters, which reduces their total number of co-partners well below the expected number in
the random model, and that they collaborate quite more often with the same people than
real movie actors or scientists do.

2.1.2.2. Clustering

In most social networks, two nodes that are linked to a third one have a higher probabil-
ity to be linked between them: two acquaintances of a given person probably know each
other. This effect is measured using the clustering coefficient. Given a node v in a net-
work, let &, be its degree, i.e., the number of neighbors of v, and let N, be the number of
links between these &, neighbors of v. If all these nodes were linked to each other, then
N, would be equal to the number of unordered pairs of nodes belonging to this set of &,
neighbors, which is k, (k, — 1) /2. The clustering coefficient C,, of node v rates the difference
between the actual value N, and this greatest value by taking their quotient:

N,
ky(ky —1)/2°
Thus, this coefficient C,, measures the fraction of neighbors of node v that are linked. No-
tice that 0 < C, < 1. The clustering coefficient C of a network is then defined as the mean
value of the clustering coefficients of all its nodes. It represents the probability that two
neighbors of an arbitrary node are linked.
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In a uniform random network with n nodes and m links, it can be proved that the expected
value of the clustering coefficient is nothing but the probability that two randomly selected
nodes are connected; in other words

2m

Crandom = m

Against what happens with real-life social networks, it turns out that the clustering coeffi-
cient of MU is small. Its value is
C(Marvel - O~0127

while the clustering coefficient of a random network with 6486 nodes and 168267 links is
Crandom = 0.008. Thus, roughly

CVMarvel ~ 1.5 x CVrandom,

and not several orders of magnitude larger.

This result separates the Marvel Universe from all other, real-life, collaboration networks.
But if we use the MU-R as a null random network to compare the clustering coefficient of
the MU network the analysis changes quite drastically. The expected value of the clustering
coefficient of the null random model MU-R is

Cwmu-r = 0.0066.
Thus, the measured clustering coefficient is about double the one predicted by MU-R
C'marvel ~ 2 X CMmU—R,

and this agrees with what is observed in real-life networks.

Our analysis shows that the Marvel Universe behaves “realistically” when compared to
MU-R, but not when compared to a uniform random network. Real-life collaboration net-
works have as clustering coefficient roughly twice the one of their null random model, and
the latter turns out to be highly clustered. The clustering coefficient of the MU network is
also roughly twice the one of its null random model, but this null random model is not highly
clustered, having a clustering coefficient only three times that of a random network with
the same number of nodes and links. We believe that, as we already argued in connection
with the average degree, this is a hint of the artificiality of the bipartite graph which projects
into MU. It seems that Marvel writers have not assigned characters to books in the same
way as hatural interactions would have done it, with the global effect that the combination
of the distributions P.(k) and P, (k) is very different from what would be found in real-life
networks, yielding non-clustered graphs. But, once we have these distributions, the Marvel
Universe behaves realistically and is significantly different from a random network.
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2.1.3. Conclusion
Real-life collaboration networks of very different origins, sizes and styles present common

basic features: they are scale-free and they exhibit the small-world property. We have stud-
ied the Marvel Universe, which is a collaboration network that is artificial and has been cre-
ated with no special intention during the past 40 years by a team of comic book writers.
Although to some extent the Marvel Universe tries to mimic human relations, it is com-
pletely different from a random network, and we have shown that it cannot completely hide
its artificial origins. As in real-life collaboration and, in general, social networks, its nodes
are on average at a short distance of each other, but its clustering coefficient is quite smal-
ler than what’s usual in real-life collaboration networks.

From this comparison we deduce that the artificiality of the Marvel Universe network lies
mainly on the distributions of edges in the bipartite graph which yields it, because the rela-
tionship between the Marvel Universe network’s data and those of its null random model is
similar to that of real-life collaboration networks’ data and their corresponding null random
models.

2.2. A network of Thrones

The following is an article by Beveridge and Shan, see [3].

The third book of the Game of Thrones series, namely A Storm of Swords, is used to construct
a social network. Characters of the book are represented by nodes, connected by integer-
weighted edges: higher weights correspond to stronger relationships between those char-
acters. With its 107 nodes and 353 edges, the network looks very complex, underlining the
interweaving of the story. The authors use modularity to detect seven communities inside

the network, and six different centrality measures to distinguish a few of the most influential
people amongst all the characters.

Relevant concepts are modularity (Section 1.2) and degrees of nodes (Section 1.1).

The internation hit HBO series Game of Thrones, adapted from George R. R. Martin’s epic
fantasy novel series A Song of Ice and Fire, features interweaving plot lines and scores of
characters. With so many people to keep track of in this sprawling saga, it can be a chal-
lenge to fully understand the dynamics between them.

To demystify this sage, we turn to network science, a new and evolving branch of applied
graph theory that brings together traditions from many disciplines, including sociology, eco-
nomics, physics, computer science, and mathematics. It has been applied broadly across
the sciences, the social sciences, the humanities and in industrial settings.

In this article we perform a network analysis of Game of Thrones to make sense of the in-
tricate character relationships and their bearing on the future plot (but we promise: no
spoilers!).
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First, a quick introduction to Game of Thrones: Westeros and Essos, separated by the Nar-
row Sea, are homes of several noble houses (see Figure 2.2.1). The narrative starts at a
time of peace, with all the houses unified under the rule of King Robert Baratheon, who
holds the Iron Throne. Early on, King Robert dies in a hunting accident, and the young, cruel
Prince Joffrey ascends the throne, backed by his mother’s house, Lannister. However, the
prince’s legitimacy, and even his identity, are seriously questioned across the kingdom. As a
result, war breaks out, with multiple claimants to the Iron Throne.

Figure 2.2.1. The Game of Thrones world: Westeros, the Narrow Sea, and Essos (from left to
right). Sigils represent the locations of the noble houses at the beginning of the saga.

Driven by cause or circumstance, characters from the many noble families launch into ardu-
ous and intertwined journeys. Among these houses are the honorable Stark family (Eddard,
Catelyn, Robb, Sansa, Arya, Bran, and Jon Snow), the pompous Lannisters (Tywin, Jaime,
Cersei, Tyrion, and Joff rey), the slighted Baratheons (led by Robert’s brother Stannis) and
the exiled Daenerys, the last of the once-powerful House Targaryen.

2.2.1. The Social Network

Our first task is to turn the Game of Thrones world into a social network. Our network, shown
in Figure 2.2.2, has sets of vertices V and edges E. The 107 vertices represent the charac-
ters, including ladies and lords, guards and mercenaries, councilmen and consorts, villa-
gers and savages. The vertices are joined by 353 integer-weighted edges, in which higher
weights correspond to stronger relationships between those characters.

We generated the edges using A Storm of Swords, the third book in the series. We opted for
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this volume because the main narrative has matured, with the characters scattered geo-
graphically and enmeshed in their own social circles. We parsed the ebook, increment-
ing the edge weight between two characters when their names (or nicknames) appeared
within 15 words of one another. Afterward, we performed some manual validation and
cleaning. Note that an edge between two characters doesn’t necessarily mean that they
are friends—it simply means that they interact, speak of one another, or are mentioned to-
gether.

The complex structure of our network reflects the interweaving plotlines of the story. Not-
ably, we observe two characteristics found in many real-world networks. First, the network
contains multiple denser subnetworks, held together by a sparser global web of edges.
Second, it is organized around a subset of highly influential people, both locally and glob-
ally. We now describe how to quantify these observations using the analytical tools of net-
work science.

2.2.2. Community Detection

The network layout and colors in Figure 2.2.2 clearly identify seven communities: the Lan-
nisters and King’s Landing, Robb’s army, Bran and friends, Arya and companions, Jon Snow
and the far North, Stannis’s forces, and Daerenys and the exotic people of Essos. Remark-
ably, these communities were identified from only the network structure, as we explain be-
low.

We want to divide the network into coherent communities, meaning that there are many
edges within communities and few edges between communities. We detect our network
communities by using a global metric called modularity. Let w;; > 0 denote the weight of
the edge between vertices i and j, where wi; = 0 when there is no edge. Let ki = 3°,
denote the weighted degree of vertex i. Intuitively, the modularity @ compares our given
network to a network with the same weighted degrees, but in which all edges are rewired at
random. This random network should be community-free, so it makes a good baseline for
comparison.

Suppose that vertices ¢ and j belong to the same community C. We would expect that w;; is
at least as large as the number of edges between them in our randomly rewired network. A
touch of combinatorial probability shows that the expected number of such random edges
is kikj/2m, where m is the total number of edges in the network. Summing over all vertices

in a community C, we have
kik;
i — > 0.
> (-5 ) 2

Wij

i,5€C
Meanwhile, if C'is not actually a community, then this quantity may be negative. The modu-
larity @ of a vertex partition C, ..., C; of the network is

1 kiki
Cmn L ()

k=14,j€C},
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Figure 2.2.2. The social network generated from A Storm of Swords. The color of a vertex
indicates its community. The size of a vertex corresponds to its PageRank value, and the size of
its label corresponds to its betweenness centrality. An edge's thickness represents its weight.

where we have normalized this quantity so that -1 < Q < 1.

Our goal is to partition the vertices into communities so as to maximize Q. Finding this par-
tition is computationally difficult, so we use a fast approximation algorithm called the Louv-
ain method.

Crucially, the algorithm determines the number of communities; it is not an input. In our
case, we discover the seven communities in Figure 2.2.2. The King’s Landing community
accounts for 37 percent of the network. When we perform community detection on this ma-
jor subnetwork, we obtain four communities. A high resolution version of Figure 2.2.2 and
the network of subcommunities of King’s Landing can be found at maa.org/math-horizons-
supplements.
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2.2.3. Centrality Measures

Network science can also identify important vertices. A person can play a central role in
multiple ways. For example, she could be well connected, be centrally located, or be uniquely
positioned to help disperse information or influence others. Figure 2.2.3 displays the im-
portance of 14 prominent characters, according to six centrality measures, which we ex-
plain below.

Robert ] 9 | S| 2 Robert
Stannis 1 i = Stannis
Cersei | g ] 13 Cersei
Jaime - ] : ] 18| Jaime
Joffrey 6 | 12 | 14 Joffrey
Tyrion L | L | B Tyrion
Tywin ] ] 10 Tywin
Arya ] o | EE Arya
Bran ] 23 | a1 Bran
Catelyn ] 1 = Catelyn
Jon 22 | Zm— E— Y
Rebb ] J S Robb
Sansa I | e Sansa
Daenerys M4 5 | E— Daenerys

° 550 0 w0 o 0.04 45 © 1,275
Degree Weighted Degree Eigenvector PageRank Bet

Figure 2.2.3. Centrality measures for the network. Larger values correspond to greater
importance, except for closeness centrality, where smaller values are better. Numbers in the
bars give the rankings of these characters.

Degree centrality is the number of edges incident with the given vertex. Weighted degree
centrality is defined similarly by summing the weights of the incident edges. In our network,
degree centrality measures the number of connections to other characters, while weighted
degree centrality measures the number of interactions.

Eigenvector centrality is weighted degree centrality with a feedback loop: A vertex gets a
boost for being connected to important vertices. The importance x; of vertex i is the weighted
sum of the importance of its neighboring vertices: z; = 3, wj:z; foreach i € V. Solving
the resulting linear system gives the eigenvector centrality. (This name comes from linear
algebra: We actually find an eigenvector for eigenvalue A = 1 of the matrix W with entries
Wij )

Let’s compare the weighted degree and eigenvector centralities for our network. The late
King Robert receives a huge boost: He has only 18 connections, but half of them are to
other prominent players! Most leading characters also benefit from the feedback loop, be-
ing directly involved in the political intrigue and sweeping military turmoil that grips the
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realm. The exceptions are isolated from the main action: Bran (presumed dead and on

the run), Jon Snow (marginalized in the far North), and Daenerys (exiled across the Narrow
Sea).

PageRank is another variation on this theme. This measure was the founding idea behind
Brin and Page’s Google search engine. Each vertex has an inherent importance 5 > 0, along
with an importance acquired from its neighbors. Unlike eigenvector centrality, a vertex does
not get full credit for the total importance of its neighbors. Instead, that neighbor’s import-
ance is divided equally among its direct connections. In other words, a vertex of very high
degree passes along only a small fraction of its importance to each neighbor.

The PageRank y; of vertex i is given by

yi=ay. ul;j,iyj + 5,
jev

wherea + 8 = 1land «,8 > 0. Researchers typically use 8 = 0.15 to find an effective
balance between inherent importance and the neighborhood boost.
PageRank does not penalize our three far-flung characters and actually has the opposite
effect on Daenerys. In fact, the PageRank ordering is nearly identical to the degree central-
ity ordering, except Daenerys jumps from 12th place to fifth place. So PageRank correctly
identifies the charismatic Daenerys as one of the most important players, even though she
has relatively few connections.
This brings us to two centrality measures whose definitions take a more global view of the
network. The closeness centrality of a vertex is the average distance from the vertex to all
other vertices. (Unlike the other centrality measures, lower values correspond to greater
importance.) The closeness values for our list of main characters is quite compressed, ex-
cept for the faraway Daenarys. However, Tyrion and Sansa have a slight edge over everyone
else.
The final centrality measure is the most subtle. The betweenness centrality of a vertex meas-
ures how frequently that vertex lies on short paths between other pairs of vertices. Math-
ematically, the betweenness z; of vertex i is

zi = M,
j,kz-ezv Iik

where o, is the number of (4, k)-shortest paths and o % (7) is the number of these (j, k)-shortest
paths that go through vertex i. A vertex that appears on many short paths is a broker of in-
formation in the network: Efficient communication between different parts of the network
will frequently pass through such a vertex. Such connectors have the potential to be highly
influential by inserting themselves into the dealings of other parties.
Betweenness centrality gives a distinctive ranking of the characters. This is the only meas-
ure in which Tyrion does not come out on top: He places third, behind Jon Snow (thanks
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to his ties to both House Stark and the remote denizens of the North) and Robert Bara-
theon (the only person directly connected to all four noble houses of the leading charac-
ters). Meanwhile, Daenarys rises to fourth place (her best showing) because of the hub-
and-spoke nature of the eclectic Essos community.

There is no single “right” centrality measure for a network. Each measure gives comple-
mentary information, and taking them in concert can be quite revealing. In our network,
three characters stand out consistently: Tyrion, Jon, and Sansa. Acting as the Hand of the
King, Tyrion is thrust into the center of the political machinations of the capitol city. Our
analysis suggests that he is the true protagonist of the book.

Meanwhile, Jon Snow is uniquely positioned in the network, with connections to highborn
lords, the Night’s Watch militia, and the savage wildlings beyond the Wall. The real surprise
may be the prominence of Sansa Stark, a de facto captive in King’s Landing. However, other
players are aware of her value as a Stark heir and they repeatedly use her as a pawn in their
plays for power. If she can develop her cunning, then she can capitalize on her network
importance to dramatic effect.

Meanwhile, Robert and Daenarys stand out by overperforming in certain centrality meas-
ures. They provide a clear counterpoint to one another and return our attention to the Iron
Throne itself. Robert’s memory unifies the crumbling network of the recent past, while
Daenarys will surely upend the current network when she returns to Westeros in pursuit

of the throne.

2.2.4. A Networked Life

We have visited the realms of Westeros and Essos to tour the basic tools of network sci-
ence. We performed an empirical analysis of our network, finding communities and identi-
fying influential people. Our network analysis confirmed some expectations and provided
new insights into this richly imagined saga. We have considered a fanciful application of

network science to give an enticing taste of its capabilities. More serious applications abound,

and network science promises to be invaluable in understanding our modern networked
life.

2.2.5. Further Reading

(1) A.-L.Barabasi, Network Science.
barabasilab.neu.edu/networksciencebook/downlPDF.html.

(2) D. Easley, J. Kleinberg. Networks, Crowds and Markets. Cambridge University Press,
Cambridge, 2010.

(3) S. Fortunato. Community detection in graphs. Physics Reports 486 nos. 3-5 (2010)
75-174.

(4) M. Newman, Networks: An Introduction. Oxford University Press, Oxford, 2010.
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2.3. The NS and the train schedules

The following article is based on the research work done by Kroon and Schrijver for the NS,
see [6].

The authors develop the algorithms used by the NS to determine the train schedules. They
construct a graph in which nodes represent the arrival and departure times of a train on a
station, and edges indicate stages of the journey or waiting times at stations. The edges are
weighted with time intervals, with the property that the next arrival or departure time should
lie in that interval. A time schedule is then obtained by determining a function (potential) on
the graph that satisfies the time restrictions imposed.

Relevant concepts are directed graphs and in/out degrees of nodes (Section 1.1).

2.3.1. Preliminaries

DEFINITION 2.3.1. We define a network to be a directed graph: a collection of points (ver-
tices), denoted by V' and a collection of directed edges (arrows), denoted by E. The net-
work will be denoted by (V, E)). For two vertices u, v, we denote by (u, v) an arrow starting
from u and going to v. For a vertex u, we define its indegree, denoted by 4;,, as the number
of arrow starting from some vertex w and going to vertex u and its outdegree, denoted by
dout, @S the number of arrows leaving from vertex u.

DEFINITION 2.3.2. Afunctiong : E — R will be called a voltage if there exists a function
p: V — R (called the potential) such that

g(u,v) = p(v) — p(u)

for all edges (u,v) € E.

2.3.2. The railway infrastructure network

When one thinks of the railway the infrastructure network comes immediately in mind, see
Figure 2.3.1 (left): the network of stations which are connected through train tracks. A more
detailed network which lies on top of the infrastructure network, is the network of train
lines, see Figure 1 (right): the direct train connections, each one with an origin, a destina-
tion, a frequency and a list of stations where the train has to stop.

If you zoom in further, for example in the network of platforms and tracks in the train station
in Gouda, then you see a much more detailed network, see Figure 2.3.2.

2.3.3. From infrastructure to scheduling and mathematics

The concepts of potential, voltage and current, crucial in the theory of electromagnetism,

can be used in the logistics of the railways as well. In this article we will focus on determ-
ining the train time schedule. We will first state the requirements the time schedule needs
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Figure 2.3.1. Left: the network of stations and tracks, right: the network of train lines.

to satisfy. These requirements will be described using a network. Afterwards the train time
schedule will be described as a potential on this network. The vertices of this network will
represent the departure and arrival times.

2.3.4. The time schedule and the network of requirements
The basis of the Dutch train time schedule is the Hourly Scheduling Scheme (Basis Uur
Patroon BUP): the time schedule is periodic and repeats itself every 60 minutes. Thus, if
at time instant ¢ a train departs from station .S, then trains from the same station depart at
time instances

ot —120,t — 60,t +60,¢ + 120, ...

as well, all of them with the same destination. Additional special trains may be added,
during rush hours or night trains for example, but the underlying basis is the BUP. An il-
lustration of this scheme is as follows: at every hour h, at h:26 (10:26, 11:26, ..., 22:26),

a (Sprinter) train departs from Zwolle station with destination Emmen, from early in the
morning until late in the evening. During a period of one hour every departure and arrival
can be given by indicating the minutes of the hour, thus as a number modulo 60 (x mod 60).

DEFINITION 2.3.3 (Modulo Arithmetic). For some given number z, we say that two num-
bers a and b are equivalent modulo z when they both give the same residual when divided



52 NETWORKS GOES TO SCHOOL

J— |

=0
]
= |
St o
—— —
: <<
= NN Co et
_O\o-—w ] L / o
B == ET——gm
5 —m e \ / = o oeow
3 g = - = S ] /
AP G o Zailow T
G - e e ey — - — £ oo

Figure 2.3.2. A detailed network of platforms and tracks in the train station in Gouda.

by z. For example, the numbers 3 and 1 are equivalent modulo 2 and the numbers 2 and 62
are equivalent modulo 60. We write 1 =3 mod 2 and 2 = 62 mod 60.

For every hourly train connection we would like to schedule we define two points, one point
representing the departure time of that train and one point for its arrival time. Let’s see an
example, look at train line 15, which is an hourly train from Amsterdam to Amersfoort. Its
program is given in Figure 2.3.3. The index 15 corresponds to the specific train line. This
train stops in Hilversum and waits there for one minute. Hence we represent this ride by
adding four points in our network, those are

V15,Amd,D, V15,Hvs,A, U15,Hvs,D, V15 Amf,A-

Amd, Hvs and Amf stand for Amsterdam, Hilversum and Amersfoort and A,D stand for Ar-
rival and Departure time. An example: v15 amaq,p cOrresponds to the time the train of line 15
should depart from Amsterdam Central Station.

Afterwards, we insert brackets to distinguish the different stages and stations where the
train from line 15 has to stop, this is

(UIS,Amd,Dv UlB,Hvs,A)» (UIS,HUS,Av UlS,Hvs,D)7 (U15,HU5,D1 UlS,Amf,A)~

Hence this expression represents a route of a train. Can you explain what this expression
indicates?

The next step is to assign the travel times and the waiting times at the stations where a stop
is scheduled. For every bracket (u, v), which now represents a stage of the route (travel
between two stations) or a stop at some station, we assign a time interval I (u, v) with the
property that the next arrival or departure time should lie in this interval. In the Amsterdam-
Amersfoort example we have

I(’U15,Amd,D7 v15,H1zs,A) = [207 22]
I(v15,Hvs, A5 V15,Hvs,D) = [1,2]

I(vis,Hos,D, V15,Amf,4) = [12,13].
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Figure 2.3.3. The train programs from lines 46 and 15.

The formulas above say that the travel time from Amsterdam to Hilversum should be between
20 minutes and 22 minutes, the waiting time at Hilversum station should be between 1
minute and 2 minutes and the travel time from Hilversum to Amersfoort should be between
12 minutes and 13 minutes. We can represent this as a directed graph, see Figure 2.3.4.

[20, 22] [1, 2] [12, 13]
> e\ .
> ) >() >
U15,Amd,D V15,Hvs,A V15,Hvs,D V15,Amf,A

Figure 2.3.4. Graphical representation of the train connection Amsterdam-Amersfoort.

We find a time schedule for this specific train line, given all these constraints, by determin-
ing a potential p, such that for every bracket (u, v) we have p(v) — p(u) € I(u,v) or equival-
ently by determining a voltage g so that for every bracket (u,v) we have g(u,v) € I(u,v).
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Applying this to the train line 15 described, we find

p(v1s,ama,p) = 27

)=

p(v1s,Hvs,4) = 48

p(v15,Hvs, D) = 49
) =

p(Uls Amf,A

EXERCISE 4. Given the above computation, what is the actual time schedule for line 15
between Amsterdam and Amersfoort? Show that the potential above defines a voltage g
which also satisfies the desired requirements.

This is the procedure to schedule one specific train line. But in reality you have a whole net-
work of train lines which might have stations in common. Hence you must avoid the scen-
ario two trains meeting each other or having to use the same platform at some station at the
same time. All these issues make the computations more complicated but the main idea
remains the same. You make the network of departures and arrivals (as in Figure 2.3.4) with
the minimum and maximum travel and waiting time and then you find a potential satisfying
the requirements.



CHAPTER 3

This chapter focuses on the research done within the NETWORKS
programme. It contains four sections on different research topics:

1. Networks with communities

2. Markov chains and their applications
3. Networks in biology

4. The phenomenon of synchronisation

Each section begins with a short introduction and proceeds with a
theoretical analysis. In each section a number of examples and
exercises have been included.
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3.1. Networks with communities

The following is a research work by Clara Stegehuis. The author gives few examples of net-
works that can be divided into communities: ideally, there should be relatively many con-
nections between nodes in the same community, and relatively few connections between
nodes in different ones. A way to discover communities is by maximising the modularity of
the network. Some examples are shown by considering a telephone networks, LinkedIn and
Facebook.

Relevant concepts are the degree of a node (Section 1.1) and modularity (Section 1.2).

In Figure 3.1.1 below the telephone network of Belgium is depicted. The points in this net-
work correspond to households; there is a line between two households if there has ever
been a phone call between them. It is evident that phone calls in Belgium occur mostly
between two communities. One community of French speaking people, who frequently con-
tact each other and a community of Flemish speaking people, who also frequently contact
each other. Between the two communities there are but a few connections, which is not so
weird because of the language barrier. But such a structure can also be observed in coun-
tries where there are no linguistic barriers. In the same figure, with the telephone network
of Great Britain, we observe a similar community structure. People from the same province
contact each other more often than people from different provinces. London connects all
different communities in the phone line network with each other.

Figure 3.1.1. The telephone networks of Belgium (left) and Great Britain, ordered in
communities.
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Besides these specific examples of networks there exist also much more networks where
we observe such a community structure. Think for example of networks in the human brain
or social media. In Figure 3.1.2 you can see for example an image of Clara’s LinkedIn net-
work. Points in this network depict her LinkedIn connections, two points being connected
means that two of her friends are also friends with each other. At first instance this net-
work looks like a complete chaos. But if we rearrange the points in an appropriate way, the
community structure is clearer. A question that arises at this point is how someone could
mathematically identify this community structure from the “chaos” of the first figure. This is
a quite challenging question that has motivated substantial research.

Figure 3.1.2. Clara's LinkedIn network, in random order (left) and ordered in communities.

3.1.1. What is a community?
In order to discover where the communities are located in a network, we must first strictly
define what a community is. If we look at the previous figures, it is intuitively clear that a
community must satisfy the following two properties:

- there are relatively many connections between points in the same community;

« there are relatively few connection between points in different communities.
One of the first methods in order to discover communities in a network uses these two
properties. This method maximises the modularity. Suppose that we partition a network
in some way into K communities. The modularity of this partition is defined as
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In the expression® above, L denotes the total number of connections in the network, Lc
denotes the total number of connections in community C' and k< denotes the sum of the
degrees (all connections leaving from some point in community C) of all points in com-
munity C. Intuitively modularity measures how much more connections there exist between
the communities from what we would expect. This can be seen from the following argu-
ment. Suppose we want to maximise the modularity by maximising the first term in the
formula for M. This would mean that we want as many connections as possible in each
community. Then the best partition is given by considering the whole network as one com-
munity and connecting all points with each other. Then all connections in the network lie in
one community, which is not what we observe in reality. That is why we subtract the second
term. This second term describes the expected number of connections in community C'if
we would construct the whole network from scratch with the same number of total connec-
tions and the same degrees, but the connections placed completely at random.

EXERCISE 5. Compute the modularity from the formula above for the complete graph in
Figure 3.1.3 and the graph with community structure in 3.1.4. Choose your own communit-
ies. What do you notice about the value of the modularity?

3.1.2. Overlapping communities

There are still many open problems that mathematicians try to solve. In social media for
example most people belong to different communities: family, sport friends or colleagues
for example. In such networks it is not possible to associate to each point a unique com-
munity because the communities often overlap. In such networks it is much more difficult
to identify the various communities. An example of a Facebook network with overlapping
communities is shown in Figure 3.1.5.

3We show that this definition of modularity is equivalent to Equation 1.2.1 in Section 1.2. Let Wi
be the number of connections between node i and j. Then

2LC = Z Wi
i,jEC
since we count each edge twice, once for i and once for j. Furthermore, let h; be the degree of node 1.
As k¢ is the sum of the degrees of all nodes in community C, we have

It follows that
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Figure 3.1.3. A complete graph, i.e., a graph in which each pair of nodes is connected.

L & &
Figure 3.1.4. A graph with community structure.

The red circles denote friends who are all members of the same sport association. The
purple triangles denote friends who also practice this sport, but are not members of the
sport association. The green squares denote friends who are colleagues from work. There
are also some friends who belong to neither of those categories. Our Facebook user is de-
noted by the blue node with number 125. After ordering the friends in four communities,
members of the sport association, sport enthousiasts that are not members of the associ-
ation, colleagues, and other friends, we get the picture in Figure 3.1.6. Can you say some-
thing about this network using modularity?
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Figure 3.1.6. The Facebook network from Figure 3.1.5, ordered into four communities.
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3.2. Markov chains and their applications

The following research work is presented by Jan-Pieter Dorsman. The weather and the Page
Rank algorithm are considered as two instances of Markov chains. For the former, a one-step
transition matrix is defined to predict with certain probability the weather in the coming fu-
ture. For the latter, a simplified version of the algorithm is introduced, to show how Google’s
search engine instantly returns ordered pages from a collection of more than 25 billion docu-
ments, matching the search criteria.

Relevant concepts are directed graphs (Section 1.1) and matrix multiplication (Section 1.3).

3.2.1. The weather as Markov chain

A Markov chain is a special form of a stochastic process. It describes something that moves
step-by-step through a number of states, and exhibits transitions from one state to another
(or the same) state. These transitions happen with a certain probability, and thus the pro-
cess changes randomly over time. What makes a Markov chain so special, is that the so-
called Markov property holds:

“The future, given the present, does not depend on the past.”

We will consider (a simplified version of) the weather as a Markov chain, using the following
assumptions.
- If it is sunny today, it will also be sunny tomorrow with probability 90%, but rainy with
10% probability;
« Ifitis rainy today, it will be sunny tomorrow with 40% probability, but it will remain
rainy with 60% probability.
This defines a Markov chain with two possible states: ‘Sunny’ and ‘Rainy’. It is clear that the
Markov property holds, as the weather for tomorrow only depends on the weather today.
We can summarise the situation in a graph, as in Figure 3.2.1.
We can also define the Markov chain by writing down a one-step transition matrix P. If
we associate the rows and columns of P with the possible states, then element (4, j) is
the transition probability from state i to state j. If we let the first row and first column be

‘Sunny’, then we have that
p_ 0.9 0.1
0.4 0.6

For example, P, o = 0.1 so if it is sunny today, it will be rainy tomorrow with 10% probabil-
ity.
Possible questions that we could ask ourselves are:
« What is the probability, if it is rainy today, that it will be sunny the day after tomorrow?
 Ifitis sunny on Monday, how many sunny days will we have on average from Monday
until (and including) Thursday?
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20% 60%

10%

40%

Figure 3.2.1. The weather as a Markov chain with two possible states: * Sunny'and " Rainy"
The transition probabilities are denoted on the edges.

= What percentage of time will it be sunny in the long run?
Using our probability matrix P, we can answer each of these questions.

Question. What is the probability, if it is rainy today, that it will be sunny the day after to-
morrow?

Suppose that it is rainy today. If it is sunny tomorrow (with probability 0.4), then the day
after tomorrow it is sunny with probability 0.9. The event of being sunny tomorrow and then
also sunny the day after tomorrow happens with probability 0.4 - 0.9 = 0.36. If it is rainy
tomorrow (with probability 0.6), then the day after tomorrow it is sunny with probability 0.4.
This event happens with probability 0.6 - 0.4 = 0.24. Since it will be either sunny or rainy
tomorrow, we add these results to obtain the total probability that it will be sunny the day
after tomorrow: 0.36 + 0.24 = 0.60.

But what if we wanted to know the probability for eight days from now? We could reason in
the same way, but we now have a lot more combinations to consider. To simplify the calcu-
lations, we can use matrix multiplication. We have that

0.9 0.1

0.4 0.6
~109-09+0.1-0.40.9-0.1+0.1-06 | |0.85 0.15
0.4-0.9+06-04,04-0.14+0.6-06 |06 0.4.

, 109 0.1
|04 06

This is the two-step transition matrix, and can be read in the same way as P. Note that we
obtained the probability from rainy today to sunny the day after tomorrow, P22,1 = 0.6, with
the exact same calculations as before.

We now can easily find the probability, if it is rainy today, that it will be sunny in eight days
from now by calculation P®. We have that

pP=p.p.P.P=pP>.p>—
0.6 0.4. 0.6 04. 0.75 0.25

0.85 0.15] {0.85 0.15}_{0.8125 0.1875}
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and

P=P'. P*= =

0.75 0.25 0.75 0.25 0.797 0.203

0.8125 0.1875] [0.8125 0.1875] [0.801 0.199}

We thus find that the probability from rainy today to sunny eight days from now is 0.797, in
a much simpler way than by mental calculation.

Question. Ifitis sunny on Monday, how many sunny days will we have on average between
Monday until (and including) Thursday?

We know that the matrix for Tuesday is given by P, the matrix for Wednesday by P? and the
matrix for Thursday by P3. We have that

e [0.9 0.1] o {0.85 0.15} o {0.825 0.175] .
04 0.6 0.6 0.4. 0.7 0.3
Another way to think of the transition probabilities in the matrix are as average fractions.
Saying that the probability of sunny today to sunny tomorrow is 0.9, is the same as saying
that if it is sunny today, then tomorrow on average we have 0.9 sunny days. To find the aver-
age occurrences, we thus have to add the transition matrices. We see that

P+ P4+ P =

04 0.6 0.6 0.4. 0.7 0.3

09 0.1 0.85 0.15 0.825 0.175
1.7 1.3

{2.575 0.425]

If it is sunny on Monday, then we will have on average 2.575 sunny days between Tuesday
until (and including) Thursday.

Question. What percentage of time will it be sunny in the long run?

Consider the different powers of P that we have calculated so far:

p_ 0.9 0.1 P 0.85 0.15 P 0.825 0.175 7
0.4 0.6 0.6 0.4. 0.7 0.3

“ o7 025

. |0.8125 0.1875 P8
’ 0.797 0.203.

[0.801 0.199}

It seems that there is a pattern forming. If we would continue indefinitely, the powers of the
matrix will converge to a limiting matrix, given by

pe_ |08 02]
0.8 0.2

As the column for ‘Sunny’ has both elements equal to 0.8, we see that in the long run it will
be sunny 80% of the time.
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(The fine print for this limiting matrix is that 0.8 and 0.2 form the normalised left eigenvector
of P corresponding to eigenvalue 1. This is a bit too complex to get into at the moment, but
it suffices to say that this limiting matrix can be obtained using P, so we are not just guess-
ing that eventually we will obtain the numbers 0.8 and 0.2.)

Since it isn’t always either rainy or sunny, we could also consider more realistic models for
the weather. Consider the Markov chain in Figure 3.2.2, where we now consider four states.
Consequently, the transition matrix P becomes a4 x 4-matrix. Though the model may be
more realistic, it will also be more computationally complex, i.e., the number of calculations
increase.

60% 40%
10%
0,
Sunny |« 20% Rainy
20%
30% 30% 30% 10%
30%
Cloudy 0% > Stormy
0
20%
40% 50%

Figure 3.2.2. A Markov chain of the weather with four possible states.



NETWORKS GOES TO SCHOOL

65

The corresponding transition matrix and limiting matrix are

0.6

0.2

0.3
0

P =

0.1
0.4
0.2
0.3

0.3
0.3
0.4
0.2

0
0.1
0.1
0.5

)

P> =

0.351
0.351
0.351
0.351

0.220
0.220
0.220
0.220

0.321
0.321
0.321
0.321

0.108
0.108
0.108
0.108

We can conclude the following from this limiting matrix. If it is cloudy today, an arbitrary
day in the future will be cloudy with probability 32.1%. Note that in fact, it does not matter
what the weather today is. We can also conclude that if it is cloudy today, in the long run
32.1% of all days will be cloudy. Again, it does not matter what the weather today is.

The dependence on today’s state of weather does become apparent when we adapt the
Markov chain, as in Figure 3.2.3. We now have two absorbing states, states that the system
can never leave. Indeed, we see that if it is cloudy (or stormy) today, then with probability
100% the weather will be cloudy (or stormy) again tomorrow. The corresponding transition
matrix and limiting matrix are

0.6 0.1 03 0.0 0.00 0.00 0.95 0.05
p_ 02 04 03 0.1 P 0.00 0.00 0.82 0.18
0.0 0.0 1.0 0.0 0.00 0.00 1.00 0.00
0.0 0.0 0.0 1.0 0.00 0.00 0.00 1.00

From this limiting matrix we can conclude the following. If it is cloudy today, an arbitrary
day in the distant future will be cloudy with probability 100%. However, if it is sunny today,
an arbitrary day in the distant future will be cloudy with probability 95%. We thus see that
in this case, the exact probability depends on the weather today.

Similarly, we cannot say what percentage of the time it will be cloudy in the future, as this
also depends on the weather today. At most, we can say that if it is cloudy today, in the long
run 100% of all days will be cloudy. However, this is not a complete surprise as ‘Cloudy’

is an absorbing state. So if we encounter one cloudy day, we will forever encounter cloudy
days. Luckily, the actual weather is more complicated than this model!

Finally, consider the Markov chain in Figure 3.2.4. We consider two consecutive powers of
the transition matrix:

0 0464 0536 0 0454 0 0  0.546
o1 0454 0 0  0.546 w2 | O 0464 0536 0
10454 0 0  0.546|’ | 0 0464 0536 0

0 0.464 0.536 0 0.454 0 0 0.546

If we continue on with matrix multiplication, we observe the same pattern in the powers
of P. Though the value of the non-zero elements changes, the placement of the non-zero
elements is constantly alternating according to this pattern. We thus do not find a limiting
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60% 40%

100% 100%

Figure 3.2.3. A Markov chain of the weather with two absorbing states, i.e., states that are
impossible to leave.

matrix. However, we do see that the elements in the matrix converge to a limiting value. By
averaging the values over the column, we could conclude something about the behaviour
in the long run. If it is cloudy today, an arbitrary day in the distant future will be cloudy with
probability 26.8%. It does not really depend on the weather today. In the same vain, if it

is sunny today, it will be cloudy 26.8% of the time in the long run. It also does not really
depend on the weather today.

3.2.2. Google's search engine
We now consider an application of Markov chains in Google’s search engine. We can think of
this search engine as a mathematical function f(x) = y, where

« xis the search query;
= y contains all websites where ‘x’ appears, presented in a certain sequence.
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30%

70% 60%

40%

Figure 3.2.4. A Markov chain of the weather with four possible states.

The function f is determined using Google’s PageRank algorithm, which searches through
a huge network. The idea behind the PageRank algorithm is as follows. We construct a net-
work in which the nodes are websites, and directed edges are hyperlinks pointing to a web-
site. We consider each incoming hyperlink as a ‘vote’ for a website. Consider for example
the graph in Figure 3.2.5. Then websites A and B each get 1 vote, and websites C and D
each get 2 votes. If we consider the fraction per website, then we find

(0.167,0.167,0.33,0.33).

If we rank the websites according to these fractions, websites C and D would be on top and
websites A and B would be on the bottom.
But this only counts the absolute number of votes that a website receives, without taking
into account whether these votes come from important websites or not so important web-
sites. Intuitively, we would consider votes of important websites to have more worth than
votes from not so important websites. To incorporate this difference of importance, the
PageRank algorithm is as follows.

(1) Start with an arbitrary distribution of votes.

(2) Divide the votes of each website equally over the websites where the websites links

to.

(3) Repeat Step 2 until the distribution of votes does not change anymore.
Let’s apply this algorithm to our example. We start with (0.25, 0.25,0.25,0.25). In the second
step, the division of votes is:
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Figure 3.2.5. A network of four websites, with hyperlinks between them.

« Areceives 0.125 votes from C;

« Breceives 0.125 votes from A;

« Creceives 0.25 votes from B and 0.25 votes from D;

» Dreceives 0.125 votes from A and 0.125 votes from C.
The new distribution of votes is then

(0.125,0.125,0.5,0.25)

We repeat the second step, and the division of votes is:
« Areceives 0.25 votes from C;
« Breceives 0.0625 votes from A;
« Creceives 0.125 votes from B and 0.25 votes from D;
» D receives 0.0625 votes from A and 0.25 votes from C.
The new distribution of votes is then

(0.25,0.0625,0.375, 0.3125).

If we continue on like this, we see that after 43 iterations, the distribution of votes does not
change any more and the final distribution is equal to

(0.2,0.1,0.4,0.3).

The final ordering of the websites is hence C, D, A, B.

How does this algorithm relate to Markov chains? Let the state space consist of the web-
sites A, B, C and D. Let the transition probabilities from i to j be the percentage of its vote
that website i gives to website j. For example, A has two outgoing links, one to B and one to
D. Then it will always give half of its votes (50%) to B and half of its votes to D.
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The algorithm is hence actually a Markov chain, with transition matrix

0.0 0.5 0.0 0.5
0.0 0.0 1.0 0.0
0.5 0.0 00 0.5
0.0 0.0 1.0 0.0

If we determine the limiting matrix of this Markov chain, we find

02 01 04 0.3
0.2 0.1 04 0.3
0.2 0.1 04 0.3
0.2 0.1 04 0.3

P> =

It turns out that the PageRank algorithm is essentially looking for the rows of P°°. Where it
gets complicated, is that Google indexes not just 4 websites, but about 50 billion of them.

In addition to that, the network is also constantly changing. Websites appear, change and
disappear, so the network is more stochastic in nature. Finally, as users we expect an an-
swer in just a few milliseconds, so we also need a fast algorithm to efficiently search through
a network of such large size. These are all important considerations to be made when re-
searching efficient algorithms.

3.3. Networks in biology

The following is a research work by Birgit Sollie. A simple model for chemical reactions is
studied by constructing directed bipartite graphs. Several networks are constructed, in which
some nodes represent the number of molecules: a chemical reaction is detected by looking at
the changes from one network to another. The number of molecules can also be recorded in a
data sequence, where each chemical reaction leads to a new data point. To quickly determ-
ine new data points, the reactions is presented in a matrix form.

Relevant concepts are directed and bipartite graphs (Section 1.1) and matrix multiplication
(Section 1.3).

The human body is composed of many different types of cells. Together, they create tis-
sues, organ systems and everything in the human body. A cell is the smallest unit of life. As
everything is composed of it, they are often called the ‘building blocks of life’. All cells have
a membrane that envelops the cell. Within the membrane is the cytoplasm, a watery liquid.
There are about 50 thousand billion cells in our body. More than half of our body is water,
for example lung cells consist of 90% water. Bone cells however consist only of 10-20%
water. Within a certain cell several types of molecules can be found, such as nutrients, oxy-
gen or proteins. A collision can occur between two molecules, with three possible results:
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« the two molecules stick together;
« the two molecules exchange something;
« nothing happens.
If two molecules stick together or exchange something, we call this a chemical reaction.

3.3.1. Network of chemical reactions
We can use network theory to model such chemical reactions in cells. To illustrate this, we
consider an example.

EXAMPLE 3.3.1. Consider four molecules: B, G, P and R. A representation of the four mo-
lecules in a cell is given in Figure 3.3.1. The following chemical reactions can occur.

1. If B and G collide, then a molecule P is formed.

2. If B and R collide, then a molecule G is formed.

3. If two molecules P collide, then a molecule R is formed.

membrane

cytoplasm

Figure 3.3.1. A graphical representation of a cell with four molecules B, G, P and R, each
denoted by a different colour.

We can write this as
B+G—P, B+R—G, 2P—R.

We can also model these reactions in a network, by constructing a directed bipartite graph,
see Figure 3.3.2. In this network, each of the molecules B, G, P and R is assigned a node.
Additional to that, we have three artificial nodes (here denoted by rectangles) that symbol-
ize the chemical reactions. Each black arrow is the input for a reaction. The output is given
by a red arrow. The edge from P to 3 has a weight of 2, since there should be two molecules
P to produce a molecule R.

Note that this is indeed a bipartite graph, since we can separate the nodes into the sets

Vi = {B,G,P,R}and Vo = {1,2,3} and there are no arrows between nodes of one set.
Perhaps a better way to draw this network is as in Figure 3.3.3.

We now have a fixed network, containing all reactions that can happen in a cell. The num-
ber of molecules changes over time in the cell, so reactions will take place with a certain
probability. These probabilities are often unknown, but we would like to know them.
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Figure 3.3.2. A network of three chemical reactions, involving four molecules.
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Figure 3.3.3. A different representation of the network in Figure 3.3.2.

3.3.2. Networks with numbers

To determine these probabilities, we consider our network with numbers. In each node,

we put the number of molecules instead of the name of the molecule (where we use the
same colours, so as not to confuse). Consider for instance the two networks in Figure 3.3.4,
where a reaction takes place from the first network to the second. Can you see which reac-
tion this is?

We constantly count the number of molecules in the cell. If the reaction in Figure 3.3.4 hap-
pens, then we can write this down as the sequence

(87 57 27 0)7 (87 57 07 1)’ A

This is the data obtained from the cell. Using this data, we can estimate the probabilities
that we are looking for.

There may occur other chemical reactions after 2P — R. Consider Figure 3.3.5. Which reac-
tions took place from the first network to the second, and how many of these reactions?
We see that the reactions in Figure 3.3.5 are consecutively

2P R, B+R—-G, B+G—P.
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Figure 3.3.4. The chemical reaction 2P — R occurs from the first network to the second
network.
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Figure 3.3.5. A number of reactions occur from the first network to the second network.

Our data sequence then becomes
(8,5,2,0),(8,5,0,1),(7,6,0,0),(6,5,1,0),...

Starting with the same number of molecules, other chemical reactions can happen as well,
see Figure 3.3.6. We have consecutive reactions

B+G—P, 2P—-R, B+R—G
with corresponding data sequence
(87 57 27 0)7 (77 4737 o)’ (77 4’ 17 1)7 (67 57 17 0)7 A

We now end up at the same configuration as in Figure 3.3.5, but the chemical reactions that
occurred were different. We thus see that, starting from the configuration (8, 5,2, 0), a lot
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Figure 3.3.6. Chemical reactions occur between one network to the other, from left to right,
starting at the top left and ending at the bottom right.

of different scenarios can unfold. What will happen, will ultimately depend on the probab-
ilities. We would also like to know what would happen after a long time. Will there be an
equilibrium reached? Or will a molecule run out, so stop existing? But then we would have
to construct a lot of these networks, to obtain data in the long run.

A way in which we can quickly determine data sequences is using matrix multiplication.
We first construct matrices associated with the network. As we have four molecules and
three possible reactions, these will be 4 x 3-matrices. We write down an out-matrix O and
an in-matrix I. Use the ordering of the molecules and the numbering of the reactions as in
Example 3.3.1. We have that

o = O O
S O = O
S O = =
= o O =
o N o O
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In the out-matrix, the element (¢, ) is equal to 1 if molecule i is an output of reaction j,
and otherwise 0. In the in-matrix, the element (4, j) is equal to 1 if molecule i is an input of
reaction j, and otherwise 0.

Taking the difference of the out- and in-matrix now gives us a matrix that qualifies how the
chemical reactions change the number of molecules in the network. Let M be the differ-
ence of the out- and in-matrix, then

-1 -1 0
-1 1
M=0-1= 0
1 0 -2
0o -1 1

If we now read along the columns of M, we see the changes that the reactions make. For
example, we see that the first reaction takes one molecule B and one molecule G and pro-
duces a molecule P.
Let b be the initial configuration, in vector form. Let r be the vector of length 3, in which ele-
ment 7 is equal to 1 if reaction i occurs and otherwise 0. We then find the end configuration
e by calculating

e=0b+ Mr.

Consider the initial state (8,5, 2,0). We want to know what happens when both the first
reaction and the third reaction occur. Then we calculate

8 -1 -1 07 7
5 -1 1 0 |4
20 Tl 0 2 (1) T
0 -1 1 1

We thus immediately find the end configuration, for which we had to draw four networks
in Figure 3.3.6. Using this matrix multiplication is thus a efficient way to determine what
happens when certain reactions occur.

3.4. The phenomenon of synchronisation

The following is a research work by Janusz Meylahn. Synchronisation processes on com-
plex networks are investigated in detail. Particular attention is given to the noisy Kuramoto
model, in which the behaviour of a set of coupled oscillators is described. The evolution of
the phase of the oscillators is described using differential equations. To solve the equations,
order parameters are introduced to describe the dynamics as the evolution of a density. A
critical threshold is then found, i.e. a value of the parameter where below this value the sys-
tem behaves significantly different than above.
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Relevant concepts are trigonometric functions, complex numbers and Euler’s formula (Sec-
tion 1.3).

We can consider many real-world processes by constructing a network and observing the
process on the network. Think for instance of

« the spreading of a rumour;

« searching for information on the internet;

« the formation of polymers;

« the synchronization of neurons firing in the brain.
There are many different processes and corresponding networks that we may consider. In
some processes, we may be interested in how different parts of the network interact with
each other. In other processes, we are more interested in (shortest) paths in the network.
A process can either take place on each node, or it can move on the network. We could also
consider processes in a discrete space or a continuous space. Finally, we can consider a
dynamic or a static network. A dynamic network is ever evolving, while a static network is
fixed.
In this talk, we will focus on synchronised processes. Synchronisation is the coordination of
events to operate a system in unison. Simply put, multiple parts work together to produce
one whole. Examples of synchronisation are:

« fireflies flashing in the jungle;

- electricity generators on a power grid;

= an audience clapping after a concert;

= neurons firing in the brain;

- the gravitational synchronisation of meteors.
(Tip: if you are looking for your next popular science book to ready, try Sync: The Emer-
ging Science of Spontaneous Order by Steven Strogatz.) In the real world we thus observe
many examples of synchronisation. Can we say something about this synchronisation using
a mathematical model?
We first have to consider what a stochastic process is. If we would intuitively describe the
ingredients needed for a stochastic process, we could say that we would need some ran-
domness, a recipe describing the situation as a function of said randomness, and some idea
of time. A stochastic process more or less represents the value of some system, which is
randomly changing over time.

EXAMPLE 3.4.1. Consider a game between two people, where a coin is flipped. If heads
is up, then you get 1 euro from your opponent. If tails is up, then you have to pay 1 euro
to your opponent. Then the outcomes of the coin-flip is a stochastic process. If we flip the
coin 8 times, a sequence could be

w={H,T,T,T,T,H,T, H}.
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See Section 3.4.4 for an exercise on the coin-flip game.

3.4.1. (Noisy) Kuramoto model

The Kuramoto model is a mathematical model used to describe synchronization. It is a
model for the behaviour of a set of coupled oscillators. An oscillator is a system that be-
haves according to a repetitive pattern. Oscillators occur in real-life, think for example of
the beating of a human heart or the swinging of a pendulum clock.

In this model we consider N oscillators, with 6;(¢) the phase of the i-th oscillator. These
phases evolve over time, according to a system of coupled stochastic differential equations,
given by

0i(t) = Zsm i ()] dt + DAW;(t).

Here, K € (0, 00) is the interaction strength, D € (0, c0) is the noise strength and (W;(¢))¢>0
are noise processes. This equation qualifies how the phase of the i-th oscillator changes in
time, dependent on the phases of the other oscillators and with some extra noise term. The
noise process is usually a random process, which is why this is called a stochastic differen-
tial equation.

The network behind the Kuramoto can be seen in Figure 3.4.1, where the nodes are the
oscillators. The edges between oscillators denote the dependence seen in the differential
equations. Since each oscillator depends on each other oscillator, we obtain a complete
graph, i.e., every node is connected to every other node.

We want to solve this set of coupled differential equations, to obtain an expression for 6;(¢).
We are able to do this as NV grows very large, by rewriting the differential equations. Define
the order parameters rx(¢) and ¢¥)n (t) b

N

ra(£)evN® = Z i0;(t).

Here, i is the complex number and e is Euler’s number. The order parameters represent the
following:

= rn(t) is the synchronization level of the population of oscillators, in other words, how

synchronised are the oscillators at time ¢;

- ¢n(t) denotes the average phase of the oscillators.
In Figure 3.4.2, an example is shown of two phase distributions, for different values of r and
1. In the left image, the phases are rather drawn out, leading to a small synchronization
level. In the right image, the phase synchronization level is almost 1.
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Figure 3.4.1. A network of the Kuramoto model for N = 6.

Figure 3.4.2. Phase distributions with r = 0.095 (left) and r = 0.929.
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We can rewrite the differential equations using the order parameters. At the end of the talk,
an exercise (reference) will go into detail. For now, we have the result

do;(t) = Krn(t)sin[Yn (t) — 0;(¢)]dt + DAW;(t).

Now the explicit dependence on the other oscillators has disappeared into the implicit de-
pendence on ¥ (t). As N gets ever larger, we can describe the evolution of the oscillators
as the evolution of a density. More on densities can be found in the exercises (reference).

We want to understand the long time behaviour of the oscillators. Since we can describe
the evolution of the oscillators as the evolution of a density, we then want to understand
the long time behaviour of the density. In particular, does the density of the system stop
evolving at some point, i.e., is there some limiting state?
It turns out that there are two possible limiting states. There exists a critical threshold K.,
such that

(1) for K < K. the system relaxes to an unsynchronised state r = 0;

(2) for K> K. the system relaxes to a partially synchronised state r > 0.

The threshold K. is the turning point between unsynchronised and synchronised. After K,
the system is partially synchronised. The closer r is to 1, the more synchronised the system
is. In this model we find that K. = 2, as can be seen in Figure 3.4.3.

08 7

0.6

r(K)

02 7

0.0 Er——— 13

K

Figure 3.4.3. The order parameter r as a function of K. The critical threshold K. is equal to 2.
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3.4.2. ‘Complex Network’

A real-life application of the theory of synchronisation networks can be found when con-
sidering the suprachiasmatic nucleus (SCN). The SCN is a tiny region of the brain, that is
responsible for controlling circadian rhythms. These are biological processes that display
an oscillation of about 24 hours. The SCN generates neuronal and hormonal activities that
regulate many different body functions in such a 24-hour cycle, using around 20.000 neur-
ons. If we consider a network of the SCN, then this is indeed a complex network.

Through research, a few things can be said about this network. The SCN has a strong com-
munity structure, and interaction between the communities is negative. (A representation
of two interacting communities is given in Figure 3.4.4.) This is the case in all mammals.
The SCN is a rich and robust network, and the structure of the network may play a role in
this. Malfunctioning of the network can cause health problems, ranging from epilepsy to
narcolepsy.

Figure 3.4.4. A representation of two interacting communities in the SCN.

3.4.3. Conclusion

There are many different types of processes to study on networks. Many real-world pro-
cesses can be modelled using networks, so networks really play an important role. An par-
ticularly interesting example of a process is synchronisation. This occurs in many biological
processes, some of which in the human body. For instance, synchronisation occurs in neur-
ons. We could tell neuroscientist something of value by using mathematical research.
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3.4.4. Exercises
Stochastic Processes
EXERCISE 6.
(@) Given a sequence of coin-flip outcomes w, construct a function X, (w) representing
your wealth after the n-th flip.
(b) Calculate the probability of having three euros after five coin flips, given that the coin
is head with probability 1/2.

Rewriting the Kuramoto model
EXERCISE 7.
(a) Write the following complex numbers in polar coordinate form:

1. —V/3+3i
2. —1—1
3. V3—i
4, —24 51
(b) Euler’s formula for complex numbers is

e’ = cosf+isiné.
Use this formula and that e**® = e¢? to ‘prove’ the trigonometric identities

cos(a + b) =cosacosb—sinasinb

sin(a 4+ b) = cosasinb+ sinacosb

(c) Use Euler’s formula to obtain expressions for cos 6 and sin § in terms of complex ex-
ponentials.

EXERCISE 8 (Kuramoto’s trick).
(a) Rewrite the order parameter

N

ra (BN ® = Z 0 ()

using Euler’s formula to obtain an expression containing sin[6; () — 0;(t)].

(b) Use the fact that two complex numbers are equal if both their real parts and imagin-
ary parts are equal, to obtain two equations for real numbers.

(c) Use the appropriate equation from the two equations from (b) to plug into the stochastic
differential equation:

%Z sin[6; (¢) — 6:(8)] + DAW(1).
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The density of oscillators

EXERCISE 9. The steady-state density for the oscillators p(0) is a function describing what
fraction of the oscillators have a phase angle in a small interval around 6. It turns out that
this steady-state density has to satisfy the differential equation

dp(0)

(@) What form should p(6) have to satisfy this equation?

For the density to be consistent, it needs to take the same valueatd = 0and 0 = 2x. In
addition to his, the density should be a probability density which means that integrating it

over 6 should give 1, i.e.
27
/ p(0)do = 1.
0

(b) Write down an exact expression for the steady-state density of the oscillators.
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SOLUTION 1 (Chapter 1, Section 1.2.4).

(@) 2 police officers, since the graph is a tree.

(b) 3 police officers, in the tree-like parts we only need two, but on the cycle we need
three.

(c) 3 police officers, in the same way as (b).

(d) 4 police officers, you can trap the robber with one on the middle node and three on
the side.

(e) 3 police officers, in the same way as (b).

(f) 3 police officers, you can then trap the robber in a corner of the graph.

SOLUTION 2 (Chapter 1, Section 1.2.4). Note: we assume that police officers use heli-
copters to chase the robber and can thus jump to any node. We also assume that the robber
only moves to a free neighbouring node if he sees the helicopter coming to land on a node
he is on. (What will change when we have a ‘smart’ robber, that can also move before the
helicopter lands on his node?)
(a) No, we need at least three police officers for the first robber and also at least three for
the second robber.
(b) Yes, focus on the robber on node 13. Then we can trap him using two police officers,
and need a third one to catch him.
(c) With one additional police officer, both robbers can be caught.
(d) We trap the robber on node 13, by allocating two police officers to node 12 and node
10. We then wait for an additional officer. We can catch the other robber using the
remaining three officers.

Place police officers on node 24, 28 and 23. Then the robber is forced to move to 20.
Keep an officer on 23 and place the others on 22 and 20, then the robber is forced

to move to 19. Keep an officer on 20 and place the others on 6 and 19, then the rob-
ber is forced to move to 18. Keep an officer on 19 and place the others on 17 and 18,
then the robber is forced to move to 21. Keep an officer on 18 and use one of the oth-
ers to catch the robber on 21.

SOLUTION 3 (Chapter 1, Section 1.3.9). We show this per element:
@) [(cA)Tij = [cAlji = c[A]ji = c[AT]ij;

(b) [(A+ B)T}z‘j =[A+ Blji = [A]ji + [Blji = [AT]ij + [BT}ij = [AT + BT]ij;

© [(AT) )i = [AT]; = [A]L;.
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SOLUTION 4 (Chapter 2, Section 3.1.1). For the graph in Figure 3.1.3, consider the com-
munities and their corresponding modularity:

Cy=1{1,2,3,4}, M =0,

CL={1,2},Co = {3,4}, M= —%,

Cy = {1},C2 = {2},Cs = {3}, Ca = {4}, M:_;

We do not improve if we consider communities, so there is no community structure. For the
graph in Figure 3.1.4, consider the communities and their corresponding modularity:

Cy ={1,2,3,4,5,6}, M =0,

Cr=1{1,2),Co={3,4),Cs = (5,6}, M=,
CL = {1,2,3},C = {4,5,6}, M — %

We improve if we consider communities, so there is some community structure.

SOLUTION 5 (Chapter 2, Section 2.3.4). The time schedule is as follows:

departure from Amsterdam h:27
arrival in Hilversum h:48
departure from Hilversum h:49
arrival in Amersfoort (h+1):02

For example, the train departs from Amsterdam at 09.27, arrives in Hilversum at 09.48,
departs from Hilversum at 09.49 and arrives in Amersfoort at 10.02. A voltage g that also
satisfies the requirements is given by

g(V15,Amd, D, V15, Hvs,A) = 21
g(U15,Hvs,A,U15,Hvs,D) =1

9(V15,Hvs, D, V15, Amf,A) = —4T.

SOLUTION 6 (Chapter 3, Section 3.4.4).
(a) We receive 1 euro if heads is up and pay 1 euro if tails is up. Then the sequences

w={HT,T,HTT,.. .}, w={+1,—-1,-1,+1,—-1,-1,...}

are equivalent. We now easily have that

Xn(w) = Zwk,
k=1

where wy, is the k-th element of w.
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(b) The coin is either heads or tails, occurring with the same probability. Let A be the
event that we have three euros after five coin clips. Then

number of sequences of length 5, with four heads and one tail

P(A) = total number of sequences of length 5

is the probability that event A happens. Indeed, since we each time either win 1 euro
or lose 1 euro, we have to win four times and lose once. The sequences in which this
happens are

{_17 13 ]-7 17 1}’ {17 _17 17 ]-7 1}7 {17 17 _17 17 1}7 {17 13 17 _17 1}7 {17 17 17 ]-7 _1}

In each flip, there are two possible outcomes. It follows that the total number of se-
quences of length 5 is equal to 2° = 32. We find that P(A) = 2

E.
(Note that we are in fact considering a binomial distribution throughout this exercise,
where 'success’ is defined as H, with probability %.).

SOLUTION 7 (Chapter 3, Section 3.4.4).
(@) Use the formulas in Table 1.3.1, Section 1.3.4 to go from Cartesian coordinates to
polar coordinates.

1. a=—/3andb=3,s0
r=1/(—V3)2 +32 =12 = 2V3,
3 2
0 =arctan [ —— | + 7 = arctan(—=v3) + 7 = =7.
(—\/ﬁ) v 3

2. a=b=-1,s0

r= V(12 + (-1 = V2,

0 = arctan (_—i) —m =arctan(l) —m = — .

3. a=+v3andb=—1,s0
r=1/(V3)2+(-1)2=V1=2,

-1 1
¢ =arctan| — | = —=m.
()=
4, a=—-2andb=5,s0

r= V(D =V,

f = arctan (%) + 7 = —arctan (g) + .



NETWORKS GOES TO SCHOOL 87

(b) Apply Euler’s formulato @ = a + b:
¢t — cos(a + b) + isin(a + b).
We also have that

ei(a+b) _ eia eiab

(cosa +isina)(cosb+ isinb)

= C0Sacosb—sinasinb+ i(cosasinb + sinacosb).

Two complex numbers are only equal when both their real and imaginary part are
equal, so
cos(a + b) = cosacosb —sinasinb

sin(a + b) = cosasinb + sinacos b.
(c) Using Euler’s formula, we find that
e’ = cosf+isind
e " = cos(—0) 4 isin(—6) = cosf — isin 6.

It follows that
0 | ,—if 0 _ ,—ib
0= ——— ing =
cos 3 , si %

SOLUTION 8 (Chapter 3, Section 3.4.4).
(a) First, multiply the equation on both sides with e~ (1) 1o obtain:

N
N (O—0;) _ L i(0; ()0, ()
ra(t)e = Nzle g .
iz

Then apply Euler’s formula to both sides of the equation:

v (8)[C08 (b (£)—6:(8)) 4+ Sin (o (H)—:(5)] =

=1

Z[cos(ej (t)—0;(t))+isin(0;(¢)—0:(t))].
(b) Equate the real and the imaginary parts:
N
(1) COS( (1) — 0:(1)) = 1 D c08(6;(1) — 6i(1)),

P (1) Sinu (£) — 6:(6)) = - > sin(6; (1) — 6:(1)).
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()

Substitute the last equation from (b) into

d9;(t) =

2=

> sin(0;(t) — 0i(t)) + DAWi(t)

to obtain
d@l(t) = KTN(t) Siﬂ(’l/JN(t) — Qz(t)) + DdWl(t)

SOLUTION 9 (Chapter 3, Section 3.4.4).

(a)

(b)

The derivative of p(0) is again p(f) multiplied by some term, so we guess
p(0) ="+ C,

where C'is a constant and f(¢) a function such that

are) :
0= 2Krsind.

It follows that f(#) = 2Kr cos 6 and
p(0) = 70 .
Note that cos 6 = cos(6 + 27), so
p(0) = e**" + C = p(2m)

for any value of C. We pick C' = 0. Next, we should have

/27T eQKrcoste —1.
0

Note that we can multiply p(6) with any constant, and it would still satisfy the differ-
ential equation and the boundary conditions. Consider

1
p(a) _ 2621(7«0050’

then we find 5
Z:‘/w€2Krc059d07
0

which is a special function called a modified Bessel function of the first kind.
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